
Proc. Int’l Conf. on Dublin Core and Metadata Applications 2009

Multilayered Paper Prototyping for User Concept Modeling:
Supporting the Development of Application Profiles

 Emma Tonkin
UKOLN, University of Bath, UK

e.tonkin@ukoln.ac.uk

Abstract

This paper describes an investigation of user-centered design methodologies intended to apply to

metadata or information architecture evaluation and deployment. The primary focus of this work

is investigation of user conceptual models and comparison with formally architected models. We

describe related work, primarily from the domain of information architecture, such as free-listing,

contextual enquiry, card-sorting and evaluation, and then describes the design, initial evaluation

and practical use of a multi-stage prototyping method designed for elicitation of user knowledge

and concepts of a domain, common conceptual models in that domain and the objects, collections

and relations between objects considered relevant by users. A simple approach to the analysis of

results is described.

Keywords: metadata; usability evaluation; paper prototyping.

1. Introduction

Recent work in the area of Dublin Core application profile design and development has given

rise to a great deal of spirited discussion, led in part by a shift towards the creation and

publication of data models that explicitly cover multiple entities and relations. Developers, users

and architects need to communicate effectively about real or perceived advantages and

disadvantages of such data models, but this has proven to be difficult, leading to some concern of

a rift between design and implementation. The following work was sparked by the apparent need

to identify fast, hands-on prototyping mechanisms that may be hoped to facilitate exploration of

the problem space. These may also be useful for teaching and learning about the relevant

concepts, but the primary aim is to find a technology-agnostic and flexible means of expressing

user conceptions of structure and concepts such as entities, relationships or hierarchy. Prototyping

mechanisms exist that may be applicable for flat data structures such as taxonomies or simple flat

records. However, the explicit handling of concept models within application profiles requires

evaluators to develop methods, or adapt existing approaches, in order to facilitate exploration and

evaluation of these standards with appropriate user groups.

In general, information architecture has no generally accepted methodology for user-centered

design. Sinha and Boutelle (2004) suggest that 'contextual enquiry, ethnographic methods, and

card sorting' are used, although it 'remains difficult to go from user research to the design itself'.

Several approaches will be briefly summarized in this paper. Conceiving information architecture

as a user-centered process is complicated by the fact that designers must balance a number of

issues, enumerated by Sinha and Boutelle as: the need to develop an understanding of user

conceptual structures; the need to incorporate understanding of business goals and concerns, and

the need to insure that the design is neither quickly rendered obsolete, nor designed in too

inflexible a manner to incorporate future additions of content and functionality.

1.1. User Conceptual Models

A simple conceptual model describes user perceptions of how an object or system operates. In

general, conceptual models are described as difficult for users to comprehend, because they

represent abstract generalizations. In discussion of the relation between scenarios, task models

and conceptual models, Sutcliffe (2003) quotes Rosch et al (1976) in stating that people 'form

51

2009 Proc. Int’l Conf. on Dublin Core and Metadata Applications

categorical abstractions naturally', in comparison to Hampton's (1988) statement that people 'are

less efficient in forming categories of concepts and functions'. As a result, Sutcliffe argues that

users may find difficulty in reasoning about conceptual models, even very simple examples such

as data flow diagrams. Furthermore, an abstraction learnt in the absence of examples and

scenarios may present specific difficulties in terms of evaluation - without provision of such

context of use, the tendency is to generalize on the basis of an abstract model. Sutcliffe provides

the example of validation of a sample abstract class: birds. The statement 'All birds can fly' is

likely to be accepted as valid by many, until a relevant counterexample is provided, bringing into

play more specific knowledge about the area. For example, one might ask, 'Is a penguin a bird?'

From the perspective of the investigator, an understanding that reasoning directly about

conceptual models is difficult in the abstract implies that exploration of a conceptual model is one

that is greatly facilitated by the existence of examples and scenarios of use.

1.2. One Model to Bind Them?

The perception that designers, developers and users share a single conceptual model is very

likely to be inaccurate. Many seemingly simple interfaces (such as the ingest interface for

Flickr.com) conceal a complex data model, and this is simply an artifact of good design practices.

A 'power user' of Flickr is able to make use of the site's full functionality, creating complex and

multilayered relations between images, collections of images, even providing a mechanism by

which images may be searched by geographic locality. A novice user can treat the site as nothing

more than a digital photograph album, 'pasting' images one by one into the album, and labeling

them by typing a title or description on the 'sticky patches' above and below each image. These

two prototypical users may well have a very different viewpoint on what Flickr is and what it

does; were one to interview Flickr users en masse, would two different conceptual models emerge,

one an extended version of the simple model described by the other?

The key concept here is not one of ubiquity, but of compatibility. That the user's perception of

the model in which he or she is working is not that of the designer is not automatically

problematic, as long as this does not lead the user into misunderstanding the interface or the

system functionality, and as long as any information that the user provides to the system is not

compromised by this simplified understanding. If simplified forms of the internal model suffice

in practical terms, then identification and enumeration of these simplified models may be a useful

step in identifying essential information and interface points, as well as easy points of entry for

novice users of the system.

1.3. Data, Logic, Physical Structure and the User

 It is useful to consider the conceptual model and application profile by analogy to another

domain, chosen as an example; the world of enterprise data modeling. We will speak in EDM

terms for convenience, although this should be taken to suggest no preference in terms of

methodology.

In this domain, a plurality of data models is generally produced for any given problem.

Although the specific names and functions of these data models vary, one may think in terms of a

conceptual model, a logical data model and a physical data model (ANSI, 1975). A conceptual

schema describes the semantics of a domain. It could be considered to be well-adapted for direct

user testing, particularly task-based user testing methods, since the conceptual model permits the

viewer to explore the types of queries that can be successfully handled by the system; however,

conceptual schema understanding is very dependent both on application domain knowledge, and

on information systems domain knowledge – such as an understanding of the modeling formalism

chosen (Khatri et al, 2006). In the specific instance of certain present application profiles, the

handling of elements that are opaque to the user except in effect – such as, under some

circumstances, identifiers or relations – may muddy the waters further. In EDM, the specific

functions performed by these technical mechanisms would be discussed within a logical data

52

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2009

model, or within a physical data model. Whilst independent of specific technical implementation,

a logical data model includes information put in place to enable a detailed view of the sets of data

involved (entities, relationships, and attributes). A physical data model includes database-specific

information such as, in the case of a relational database, tables, indexes and keys or, in the case of

a Semantic Web application, identifiers, relationships, etc.

One might see this distinction as a useful one to keep in mind during the evaluation of a data

model. Where an explicit distinction between these areas of functionality is not made, or an

explicit series of directives on the area of functionality between 'administrative' and conceptual

metadata is not given - in short, where infrastructure and user-facing functionality are presented

on the same level - the problem of understanding the model is further complicated. As a result,

the burden of on the reader in both the implementation and application domain is increased, as the

reader must make these distinctions him- or herself as part of interpreting the model provided.

1.4. Critiques of Prototyping in the Conceptual Domain

A criticism often leveled at the direct use of usability evaluation of (or data collection

surrounding) conceptual structures is that in general, what is achieved is primarily evaluation of

the interface itself. There is a level of justice to this; the conceptual model represented within an

interface design may not (indeed, often should not) closely resemble the logical data model, and

hence criticisms leveled at the interface may not be easy to apply to the logical model. They may

apply directly to the conceptual model, however. In usability testing of software engineering

approaches such as model-view-controller, methodologies often allow for the possibility of

refinement of all elements of the model (Sousa et al, 2005). In general, many classes of usability

flaw may be traced to the model; for example, Neilsen's heuristic (Neilsen and Molich, 1990)

regarding the match between systems and the real world recommends that “the system[...] speak

the users' language, with words, phrases and concepts familiar to the user”; this may well point to

inconsistencies between the concepts mapped in the data model and those familiar to the user.

A second valid criticism of task-based evaluation making use of prototype software is that the

interface chosen, if it is poor, will be detrimental to achieving a good evaluation. That said, the

fact that poor interfaces may reduce the effectiveness of user evaluation methodologies is well-

understood in human-computer interaction literature, and resulted in a greater focus on paper

prototyping methods such as the use of simple drawings or representations on a whiteboard, a set

of cards or piece of paper. Snyder (2003) notes that paper prototypes are “less intimidating”,

achieve a “more creative response” and discourage “nitpicky feedback, because it’s obvious that

you haven’t specified the look yet.”

The question of how issues identified via user testing may be traced back to an element of a

design, to the conceptual model, to the interface layout or its functional design, is nonetheless a

significant point. Diagnosis of where a given issue originated and how it may be solved is non-

trivial - and indeed a given complexity may result from the interaction of several layers within the

design. Finding a solution may require detailed analysis and exploration of the problem space,

perhaps through further prototyping, to identify effective solutions.

2. Review of User-Centered Design Methods Applied in Information
Architecture

Several approaches taken toward enabling user-centered design in the domain of information

architecture have been mentioned earlier in this paper; these are briefly summarized here.

2.1. Ethnographic Methods and Contextual Enquiry

Ethnography, a term originally used to refer to a branch of anthropology devoted to the study

of human society, is used in the human-computer interaction world to refer to the general area of

researching human activity through study of user activity in context, observation, interview

techniques and examination of related artifacts. It is a large genre of related research methods,

53

2009 Proc. Int’l Conf. on Dublin Core and Metadata Applications

with the general advantage of being extremely powerful, containing little bias and allowing for

the unexpected. In general, the focus cast by ethnographic study on the user's environment and

context leads to findings that are both useful and unexpected. The downside of the approach is the

fact that it is time-consuming, often more expensive than less detailed 'discount' approaches,

often requires many participants and the results that are produced are sometimes hard to validate

or interpret, and are often difficult to apply directly to a design process.

Contextual enquiry is one of many specific methodologies offering a formal framework

enabling the designer to learn about the users who will be making use of the software, and the

environment in which they work or live (Beyer and Holtzblatt, 1998). It incorporates a number

of ethnographic methods, adapting the approach to be essentially oriented around asking

questions, interviewing the user (Rose et al. 1995).

2.2. Free-Listing Exercises

The free-listing technique is borrowed from the domain of cognitive anthropology (Sinha and

Boutelle, 2004); it is an approach designed to enable investigators to gain an overview of the

scope and boundaries of a content domain, through investigation of user perceptions of the

domain. It can also be applied to investigate the level of consistency between participant

responses and the level of domain familiarity of a given participant (Sinha, 2003).

The method may be applied within an interview or as a written exercise; the participant is

simply asked to “name all the X's you know”; for example, an investigator interested in

producing an image-search facility might start by asking participants to name all the types of

image that they can think of; an investigator looking at library searching might query participants

about book genres. Not only will this provide the most common vocabulary terms applied within

that group, which may be useful for later stages of work, but it will also provide an estimate of

the types of image (or genre) that are most commonly understood and are most psychologically

salient (eg. the most commonly listed, and the terms listed earliest).

The results of individual free-listing exercises can be collected into a frequency table not

unlike those that result from social tagging (contribution of free-text terms, often used for

indexing purposes. Consistency of response will alter depending on domain scope and nature, and

on the domain knowledge of participants; approximately 30 participants are usually

recommended (Sinha, 2003).

2.3. Card Sorting

Amongst other uses of the technique, card sorting is probably the most common approach to

eliciting information about site navigation, taxonomy design and menu structure. It is cheap,

requiring only a simple stack of file cards, is quite simple to apply, and represents an easy and

effective means of eliciting opinions from individuals or groups of users on the subject of the

groupings of terms that they feel 'make sense' – and may as a consequence be expected to be

more intuitive in practice. Card sorting is related to the practice of building affinity diagrams

(Kawakita, 1991).

Two primary methods for performing card sorts are defined by Spencer and Warfel (2009). In

open card sorting, participants are provided with a set of cards that are pre-labeled with

information (such as terms or site content). They are then asked to sort them into the groups that

they find most appropriate, and then to label each group. In closed card sorting, by contrast,

participants are provided with a pre-established set of label terms defining the 'primary groups';

they are then asked to sort the labeled cards into this existing structure. This latter method is

primarily of use where information must be added to pre-existing structures.

Card sorting brings with it a number of limitations; Spencer and Warfel (2009) note that it does

not support task-based analysis, and the groupings that are provided by users may break down

when viewed within the context of a specific task. However, in principle a card-sorting approach

may be used in tandem with task-based evaluation. A series of terms, once sorted into a structure,

54

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2009

can be evaluated using a method such as that described by Spencer (2003). Test participants are

able to ‘explore’ the card-based system in order to complete a task given to them by the

individual running the evaluation. Note that practical exploration of this has suggested that in this

area of usability testing, as elsewhere, it is preferable to leave evaluation of a system, and in

particular the choice of scenarios to be used for that purpose, to a third party, as scenarios are

often unconsciously chosen to show the system to advantage.

Complex or poorly understood content may be difficult for participants to work with; some

knowledge of the application domain is likely to be required. Additionally, plain card sorting

supports a limited set of relations; it permits participants to indicate the membership of a card set

to a given group, but the results are generally hierarchical in nature and hence it is not possible to,

for example, describe a given card as linked to multiple groups or categories. This issue may be

mitigated by various means; for example, it is possible to build up complex relations through

cross-linking cards – for example, by means of colored dots placed on cards to indicate links.

This, however, could increase the memory load on the user and may be difficult to work with

beyond very simple examples. Free listing, card sorting and scenario-based evaluation, presented

appropriately in a well-structured and controlled evaluation process, together represent a flexible

and powerful approach to building and evaluating data structures.

3. Prototyping Methods for Complex Data Structures

In order to investigate user preconceptions of information within a domain, and to provide

interface surrogates for the purpose of investigating possible conceptual models, we first

investigated the use of a variant on card sorting (initially using cards and then using sticky notes

to simplify transportation of the resulting designs). However, several practical issues quickly

became apparent. Firstly, multi-level models (for example, FRBR's Manifestations, contained

within Expressions and encapsulated within a Scholarly Work) could not easily be represented in

this manner. Secondly, investigation of relationships between items or elements was not easy to

visualize and to revise. Thirdly, the cards themselves, and the surfaces on which they were

grouped, rapidly gained a very large number of annotations. Initial experience with this method

also showed that participants modeling complex data structures were forced to 'overload' cards

with multiple meanings - for example, a given card could represent a term/metadata element, a

relation between terms, or an entity. This suggested that the resources provided were insufficient

to enable fluent expression of the different characteristics of a given model.

FIG. 1. A blank workspace for multilayered paper prototyping

55

2009 Proc. Int’l Conf. on Dublin Core and Metadata Applications

We therefore produced a simple variant on the principle of card sorting. Instead of using cards

on a flat surface, a large paper sheet was provided along with sticky notes; a variety of shapes and

colors are provided, simplifying participants' task of developing an encoding scheme, or

expressing his or her preferred encoding schemes. Due to the space limitations and the 'busy'

nature of results achieved using this prototype, we refined it further to include the notion of a

multi-layered work surface; several large transparent plastic (acetate) sheets are layered over a

large sheet of thin card acting as a base. Sheets are simply clipped onto the card, so that

additional sheets can be inserted or sheets reorganized if necessary. Non-permanent overhead

projector pens are provided to allow participant to annotate the sheets directly; a whiteboard

eraser enables these annotations to be removed or amended. There are two advantages to this: a)

it simply increases the ‘drawing space’ available and b) the multiple layers allow participants,

prompted or unprompted, to explore categorizations/relations on separate layers – ‘clean slates’.

This approach was chosen, rather than simply working with a standard such as UML, for

several reasons. Firstly, UML itself is a difficult concept for most stakeholders. Secondly, the

more technical or complete an artifact appears, the greater the disinclination to make changes or

volunteer opinion – much as with evaluation of a fully-implemented interface, participants are

often disinclined to admit disagreement, state their opinions directly or propose alternatives.

Paper prototyping methods are often most productive when the stakes are seen to be low – the

participant is invited to explore the possibilities and reassured that within the scope of the session

there are no 'right' or 'wrong' answers – and when the tasks that they are given are easily

understandable, visual and appear to require no specialist domain knowledge. An important

caveat for all the methods described here is that those with specialist knowledge of a given data

structure or design pattern will tend to replicate that design pattern as closely as possible, rather

than approaching the question without preconceived ideas or ideals.

3.1. Method

This method may be used either with a single participant, or within a group. Group dynamics

have the disadvantage that they may tend to produce results that are not representative of

participant consensus, especially when one participant is a domain expert, in which case others

are inclined to defer to their approach. However, at times, such as during workshops, the group

approach may be preferable. With large numbers of participants the group approach may be the

only means of ensuring that investigators are able to devote sufficient time to observation and

interaction with the participant(s), an important aspect of this approach.

The first key steps of paper prototyping in general are identification of appropriate

stakeholders or user groups and of the tasks of most relevance to the system and the users. In

general, these steps are considered prerequisite to the development of application profiles or data

models, so this information is generally already available. That said, it is likely that as

understanding of the system and its environment progresses, these key details will also be

amended, especially in the way that they are understood and expressed.

After a brief introduction to the concept of user testing, each participant should be provided

with a brief introduction to the testing method - one approach to introducing the method is

discussion of a simple example from an unrelated domain. An alternative is simply to introduce

each stage as a separate task for the user to complete. A series of sample objects are described to

the participant; these should be representative examples of the type of information for which a

conceptual model is required, including some difficult or complex examples that may be

appropriate to encourage the user to challenge their preconceptions about the domain. These

examples are provided (or copied) onto small sticky notes and placed on the lowest transparent

sheet; the others folded away initially to allow the participant to work. Free listing can be used

initially to develop a series of sample objects, although this is more effective when initially

completed separately and then the resulting merged set further developed within a group.

56

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2009

 Initially, the participant is asked whether it is possible to sort these objects into groups;

following this, the types of relationship that causes the objects to be grouped are discussed. With

complex types of object there will often be several; for example, within a group of objects a

participant may state that one object is a version of another, whilst a third is an adaption, and a

fourth is thematically similar. The participant is then asked to draw derived groups (entities) and

suggest some descriptive terms to explain the ways in which the objects or groups are linked. As

sheets become crowded, the participant is invited to add another to the stack; the ability to

reorganize sheets is sometimes useful.

A third stage of exploration of the model created by the participant, once he or she is familiar

with the types of objects under discussion, is to provide, suggest or ask the participant to suggest

some tasks that a user might want to achieve; for example, browsing through objects to find all

examples related to a given theme. This allows the participant to subjectively evaluate the

decisions that he or she has made, as well as providing input on users' expectations of relevant

tasks and approaches to accessing the information. The investigator may wish to take a turn

solving a task proposed by the participant, in order to test their understanding of the model.

Overall, the process of exploration shared between the investigator and participants combines

elements of card sorting and free-listing, in order to describe a structure that can then be explored

through task-based evaluation. The complexity of the process – with several stages involved –

means that the investigator will spend significant time guiding the participants from one stage to

another. This is time-consuming, with one session taking perhaps one to two hours.

FIG. 2. A sample session encompassing resources, links, entities and agencies

3.2 Analysis of Results

As with card sorting (Spencer, 2003), the analysis of the results is potentially a time-

consuming problem, mitigated by setting constraints on the task provided to the user, and

ensuring that it is clearly and simply described. Sorting of objects can be treated as a standard

card-sorting problem, with the caveat that the expected grouping may have been considered, but

diagrammed in a different manner. Relationships, entities and properties of groups, all of which

may be discussed within the context of a given session, may be treated similarly. Terms applied

to each may be elicited and listed alongside a frequency count of appearances, to develop an

overall estimation of most preferred terminology. Any type of element from the overall model

57

2009 Proc. Int’l Conf. on Dublin Core and Metadata Applications

may be investigated in this way; if elements are functionally equivalent but named differently,

then it may be understood as two appearances of a single semantic, with two possible terms

associated to it.

Exploration of the model, once created, may be treated as a slightly simplified form of task

analysis, and evaluated accordingly. This step is primarily one of establishing the limitations of

the model as described, in effect simply by asking questions and seeing whether they may be

answered using the structure as laid out. One may expect to see significant variation in the models

as created. Consistency can be improved by closely guiding the process, but the need to do this

should be balanced against the likelihood of injecting bias. A great deal of the value of this

approach is in close communication with the participants, and the ability to interview users as

they develop and explore a concept model. Ensuring consistency in graphical layout is less

important than ensuring that the idiosyncratic encoding scheme applied is explored and the results

clearly recorded; the onus for achieving this is on the individual performing the evaluation. A

disadvantage is that the reusability of the resulting representations is typically fairly low – they

are part of a process of eliciting information, an aide-memoire rather than a product. It is

important that the analysis and results are carried out in an objective and clear manner; unclear

reporting may give rise to contentious debate. As Snyder (2003) puts it, “It's natural for us to

filter information through our own set of ideas and prejudices, but this subjectivity means you're

now dealing with opinion rather than data.”

It is important to recall that, as mentioned previously, user conceptual models may not be

appropriate models for use from the point of view of the system designer or information architect,

perhaps representing a simplified view of the actual data contained within the system. The actual

model in use may be a more complex model that may be visually simplified or 'folded' into an

apparently simpler form to approximate the users' expectations, yet itself fulfils the stated aims of

flexibility, adequacy to system requirements, and long-term viability.

3.3. Resources, Costs and Benefits

The physical resources required for multilayered prototyping are not as immediately

inexpensive as a pure card sorting approach, which can be completed at almost no cost. Sticky

notes and non-permanent overhead projector pens are commonplace in the office environment.

Large acetate sheets, by comparison, must be procured from specialist shops such as art suppliers.

That said, the overall cost of resources for this method remains low, and the startup cost is

incurred only once. Materials can be cleaned and reused indefinitely.

There is a widespread perception that usability studies are time-consuming and expensive in

general terms. Whilst no detailed cost-benefit analysis will be attempted here, it is interesting to

consider the case of the application profile development, engineering and deployment process.

Engineering interfaces and internal data models that suit the application profile as published will

incur a significant cost for implementers, of which there may be several; deployment of the

resulting systems may risk alienating users, a reduction in use and decreased traffic for a service;

resources may be swept into improving the interface. Any alterations that are recommended for

the application profile itself may result in expensive development and maintenance for each

organization creating or making use of the data.

The benefit arising from user evaluation that is generally cited in business cases primarily

reflects the avoidance of costs that might otherwise be incurred at a later date. It may also reflect

the possibility of encouraging a larger audience of users through recommendation, satisfaction,

repeat visits and word-of-mouth. Rajanan and Iivari (2007), however, note that this benefit is not

always well understood, and that usability may instead be seen as an increased cost. As the role of

usability testing in the world of application profile development is not yet clearly understood or

widely researched, it is difficult to speculate on whether the approach will improve things

materially.

58

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2009

We used this approach initially in exploring user perspectives on e-prints. We found that the

specific approach described here does provide users with a means by which to develop and their

understanding of a domain, and by that means, through examples and provided or negotiated

scenarios, to express, refer to and explore a conceptual model. This alone is sufficient cause to

explore the use of the method further and to explore its use for various purposes, such as forming

a basis for eliciting and prioritizing simplified models for interface design, or eliciting and

prioritizing functional requirements for interface design (Snyder, 2003). We found it necessary to

develop session ‘scripts’ in order to guide participant activity without excessive prescription (or

proscription); this is still a work in progress, and one of our aims for the future is to explore and

evaluate these experimental frameworks. The most important aspect of this work for our purposes

was simply the fact that we need a prototyping approach that is itself usable – that is accessible to

the user. Building up a model from colored card and inks appears simple, and the participant can

to some extent choose his or her own conventions for representation. The result is individual and

usually visually appealing, and the participants, as the expert users of their own representations,

are usually able and willing to support evaluation of the models that they have built. The present-

day alternative is exploration of a model built by domain experts, typically through

documentation produced by domain experts, the accessibility of which for many of the

stakeholders involved is unfortunately low.

3.4. Clarifying Requirements: What's In A Model?

One clear limitation of paper prototyping in general is worth highlighting; as mentioned

previously, unless the process is managed carefully, there is a possibility that the models

produced will be over-enthusiastically engineered, containing extraneous detail and information

that is of relevance only to implementers. This, as previously mentioned, is particularly the case

with domain experts and those with extensive experience of one form or another of data modeling.

To some extent, this is unavoidable; however, the phenomenon is an interesting one, as it returns

us to the earlier discussion of the EDM concepts of conceptual and logical data models, and

causes us to ask: what's in an application profile?

A great deal of additional data is collected during an exploratory or evaluative process, from

preferred terminologies, groupings, browse methods and concept models to candidate scenarios.

Much of this information does not at present have any obvious role in documenting a Dublin

Core Application Profile, leading us to remark that the DCAP itself as an engineering artifact

represents a small (if key) subsection of the information required to develop relevant

infrastructure and interactive elements in order to bring a complex application profile into

practical use.

Where application profiles contain only a set of terms connected to a single entity, the potential

for misunderstanding and confusion is vastly lower than the gap between information architect

and developer in the case of more complex constructions, and this brevity represented a form of

functional simplicity. Today, there is a possibility that this factor may negatively impact the

uptake of otherwise valuable application profiles. One suggestion for future work in this area,

therefore, is to examine through a test case the process of encouraging adoption of novel

application profiles in some detail, and to identify and provide relevant documentation. Adoption

of a technical artifact is a social process, and as a result, communication is a key factor in its

success. One important factor in this is the decision to consider social factors such as

documentation, interface, audience and usability concerns as integrated parts of a larger general

process; evaluation after the event is often ‘too little, too late.’

4. Conclusion and Further Work

Early studies in application of this approach suggests that participants, if given an appropriate

medium in which to work, are willing to engage with each stage of the process and that the

resulting artifact can represent a useful 'bridge' for communication between participant and

59

2009 Proc. Int’l Conf. on Dublin Core and Metadata Applications

investigator. We intend to make use of this approach along with associated work in fast interface

prototyping and user testing on the basis of application profile definitions, as part of a wider

project in the area of application profile evaluation and engineering recommendations,

specifically identification and examination of obstacles delaying uptake of the Scholarly Works

Application Profile. We also intend to further explore the potential uses of this approach as a

hands-on aid to teaching and learning about metadata. As part of this work, we expect to assess

the methods described here via a number of metrics, in particular an estimate of minimum

participant numbers, required in order to allow the necessary timescale and overall cost of

evaluation via this methodology to be established.

Acknowledgements

This work was partly supported by the JISC.

References

American National Standards Institute (1975). ANSI/X3/SPARC Study Group on Data Base Management Systems;

Interim Report. FDT (Bulletin of ACM SIGMOD) 7:2.

Beyer, Hugh and Karen Holtzblatt. (1998). Contextual Design: Defining Customer-Centered Systems. San Francisco:

Morgan Kaufmann. ISBN: 1-55860-411-1

Hampton, James.A., 1988. Disjunction in natural categories. Memory and Cognition 16, pp. 579–591

Kawakita, Jiro. (1991). The Original KJ Method, Kawakita Research Institute.

Khatri, Vijay, Vessey, Iris, Ramesh, V., Clay, Paul, and Sung-Jin Park (2006). Understanding Conceptual Schemas:

Exploring the Role of Application and IS Domain Knowledge. INFORMATION SYSTEMS RESEARCH. Vol. 17,

No. 1, March 2006, pp. 81-99. DOI: 10.1287/isre.1060.0081

Rajanen, Mikko and Netta Iivari (2007). Usability Cost-Benefit Analysis: How Usability Became a Curse Word?. In:

Baranauskas, Cecilia, Palanque, Philippe, Abascal, Julio and Barbosa, Simone Diniz Junqueira (eds.) Proceedings of

the INTERACT 2007 2007, Rio de Janeiro, Brasil. pp. 511-524.

Nielsen, Jakob., and Rolf Molich. (1990). Heuristic evaluation of user interfaces, Proc. ACM CHI'90 Conf. (Seattle,

WA, 1-5 April), 249-256.

Rosch, Eleanor, Mervis, Carolyn B. Gray, Wayne D., Johnson, David M. and Penny Boyes-Braem. (1976). Basic

objects in natural categories. Cognitive Psychology 7, pp. 573–605.

Rose, Anne, Plaisant, Catherine, and Ben Shneiderman. (1995). Using Ethnographic Methods In User Interface Re-

engineering. Proceedings of the ACM 1995 conference for Designing Interactive Systems: processes, practices,

methods, and techniques. New York, NY: ACM Press, 1995, pp. 115-122.

http://delivery.acm.org/10.1145/230000/225447/p115-rose.pdf

Sinha, Rashmi (2003). Beyond cardsorting: Free-listing methods to explore user categorizations. Retrieved April 2nd

from http://www.boxesandarrows.com/view/beyond_cardsorting_free_listing_methods_to_explore_user_

categorizations

Sinha, Rashmi R. and Jonathan Boutelle (2004). Rapid information architecture prototyping. Conference on Designing

Interactive Systems 2004: 349-352

Snyder, Caroline (2003). Paper Prototyping. Morgan Kaufmann. ISBN 1558608702

Spencer, Donna. (2003). Card-based Classification Evaluation. Retrieved April 2nd from

http://www.boxesandarrows.com/view/card_based_classification_evaluation

Spencer, Donna and Todd Warfel (2007). Card Sorting: A Definitive Guide. Retrieved April 2nd from

http://www.boxesandarrows.com/view/card_sorting_a_definitive_guide

Sousa, Kenia. Furtado, Elizabeth and Hildeberto Mendonça (2005). UPi – A Software Development Process Aiming at

Usability, Productivity and Integration. CLIHC'05, October 23-26, 2005, Cuernavaca, México.

Sutcliffe, Alistair. (2003). Symbiosis and synergy? scenarios, task analysis and reuse of HCI knowledge. Interacting

with Computers. Volume 15, Issue 2, April 2003, Pages 245-263

60

