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Abstract 
The aim of the JISC Information Environment Service Registry (IESR) is to assist other 
applications, to discover and devolve materials that match their users’ interests in their research, 
learning and teaching. This paper describes the experience of using an Application Profile 
throughout the application development process, from initial data design, through application 
implementation, to scenarios illustrating application use. Also discussed is the benefit of using an 
Application Profile to share both a data schema and actual data with similar initiatives. 
Keywords: service registry; application profile; metadata schema. 

1.  Introduction 
The JISC Information Environment Service Registry (IESR) (IESR, 2007a) is a middleware, 

shared service providing a single central registry within the JISC Information Environment (JISC, 
2007). It aims to assist other applications, such as portals, virtual learning applications or research 
services, to discover and devolve materials that match their users’ interests in their research, 
learning and teaching. It contains information about collections of resources that JISC (the Joint 
Information Systems Committee) makes available within UK Higher and Further Education, or 
that are useful to this community. Additionally IESR contains details of how to access technical 
services, both those that make the collections available, and others that play a significant role in 
the information environment. The early development of IESR was described in a previous Dublin 
Core conference paper (Apps, 2004) and details of later application developments have been 
published (Apps, 2006) more recently.  

The design of IESR was documented using a Dublin Core Application Profile (CEN, 2003) 
from the outset. This paper considers the advantages of this approach and the evolution of the 
Application Profile (IESR, 2007b) as IESR develops into a service with identified uses.  

2.  The IESR Domain Model 
The IESR application model comprises three types of entity: ‘collection’, which is an 

aggregation of resources; ‘service’, which is a system that provides one or more functions, being 
either an ‘informational’ service providing access to a collection, or a ‘transactional’ stand-alone 
service; and ‘agent’, which may be an owner of a collection or an administrator of a service, or 
both. Additionally each entity has an associated set of administrative metadata. This model is 
depicted in FIG. 1.  

The initial design of IESR metadata was informed by the Research Support Libraries 
Programme (RSLP) Collection Description Schema (Powell et al., 2000), which was based on 
Heaney’s (2000) study “An Analytical Model of Collections and their Catalogues.” There are a 
couple of significant differences between the IESR model and the Heaney model, both made for 
pragmatic reasons to simplify use of the application. Within IESR the term “service”, which 
denotes a single access point to a collection, is actually a conflation of Heaney’s “location” of the 
collection and a “service” provided at that location. In situations where a collection is a catalogue, 
the catalogue and the collection it describes are conflated into a single collection description of 
type ‘catalogue’. This means that users see, for example, a catalogue of items of type ‘image’, 
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rather than the theoretically correct but potentially confusing catalogue that describes a collection 
plus a second description of the collection that contains images. 

  

 FIG. 1. The IESR domain model. 
 

It may seem strange that a ‘service registry’ describes collections. And it may appear more 
intuitive to centre the specification around services. Some confusion arises from the various 
overloaded meanings of the word ‘service’. Within IESR context, a service is a low level, 
technical access point to a data collection, or a broker service such as an OpenURL (Apps & 
MacIntyre, 2006) resolver (that provides access to resources appropriate for a user’s context), or a 
component of a technical Service Oriented Architecture (Wikipedia, 2007a). In reality, within the 
JISC Information Environment, the function of many services is to provide access to a data 
collection, so some information about a collection is needed. Describing the collection as part of a 
service becomes complicated when there is more than one service available to access a collection, 
e.g. ‘find’ via a web search, ‘find’ using Z39.50 (a standard machine protocol for information 
retrieval) (ANSI/NISO, 1995), and an Open Archives Protocol for Metadata Harvesting (OAI-
PMH) (Lagoze et al., 2004) ‘harvest’. The model is much cleaner when collection-based as well 
as being based on the formal modelling described above. In practice the collection-based IESR 
model works well.  

3.  The IESR Application Profile 
The IESR Application Profile documents the IESR metadata, which is a set of properties used 

to describe each entity. It defines constraints such as which properties are mandatory and which 
may be repeated. It is based on the Dublin Core Application Profile (DCAP) Guidelines (CEN, 
2003), but with some variations. Mainly for consideration of the document length, only those 
application profile attributes necessary to define each property are included. The attributes ‘type 
of term’, ‘refines’, ‘refined by’ and ‘similar to’ are not used at all because, although they would 
define theoretical characteristics of the metadata properties, they are not necessary to the 
application. In the first version of the Application Profile the source definitions of and comments 
about properties were not included, again to reduce the size of the document. However these have 
now been included because it seems instructive to be able to view the source and IESR 
definitions in one place.  

Various additional application profile attributes have been included, because it seems more 
efficient to include all documentation of the metadata properties in one place. The first extra 
attribute introduced was ‘IESR Searchable’. This indicates which properties are searchable via 
the IESR application’s machine interface, and documents the associated search fields 
corresponding to the property. Further IESR application profile attributes have since been 
included to provide different levels of compliance as described below in Section 5. An example 
of an entry in the Application Profile for a single property is shown in FIG. 2.  

Collection 

Admin

Service Agent 

Admin Admin

owner 
 [n:m] 

hasService 
     [1:m] 

administrator 
       [n:m] about 

 [1:1] 
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The DCAP Guidelines describe an application profile that captures a single entity. This 
corresponds to a single resource description within the Dublin Core Abstract Model (DCAM) 
(Powell et al., 2005), which specifies a flat set of properties for a single resource, with no 
provision for any composite properties according to any hierarchical model and syntax. Thus 
some extension of the DCAP has been required to capture the four entities of IESR. 
Dissemination of IESR metadata comprising several entity descriptions corresponds to a 
“description set” within the DCAM. In order to accommodate the several entities of IESR the 
DCAP is composite, split into several sections, one for each entity, preceded by a section that 
specifies the entities. Within the metadata itself there are properties that capture the relations 
between entities (“hasService”, “owner” and “administrator” shown in FIG. 1 and their inverses).  

 
Name usesControlledList 
Term URI http://iesr.ac.uk/terms/#usesControlledList 
Label  Uses Controlled List 
Defined By http://iesr.ac.uk/terms/#usesControlledList 
Source Definition A classification scheme or thesaurus used by the collection 
Has Encoding Scheme http://iesr.ac.uk/terms/#CtrldVocabsList 
Data Type <string> 
Occurrence Min: 0; Max: unbounded 
IESR Searchable 20, 1040, 1112, 1016, 1017, 1035; classn, anywhere 

FIG. 2. IESR Application Profile entry for a Collection property. 
 

3.1.  Collection Properties: Importing and Customising an Existing Application 
Profile 

As explained above, the IESR collection metadata is based on the RSLP Collection 
Description Schema (RSLPCD), which at the time when the IESR project started appeared to be 
an appropriate schema to use for collection description, even though it was a ‘de facto’ rather 
than ‘official’ standard. The DCMI Collection Description Application Profile (DCMI, 2007a) 
and the NISO Metasearch Initiative Collection Description Specification (ANSI/NISO, 2005) 
have since been derived from RSLPCD, so IESR has tried to maintain consistency with these 
schemas and has fed experience into their development. 

RSLPCD was developed to describe both physical and electronic collections within a range of 
domains, including museums, archives and libraries. Because IESR describes electronic 
collections, primarily to support discovery, not all of the RSLPCD properties have been included 
in IESR. For example records management information such as details about accrual, legal and 
custodial history were not thought relevant within IESR. In the early stages of the IESR project 
potential stakeholders were surveyed about their possible use and requirements of a registry of 
collections and services. This provided initial input to decisions on the properties that would be 
needed or useful. These decisions have been refined over time as use has been made of IESR with 
‘formal’ metadata reviews undertaken at intervals. In some cases the IESR definition of a term is 
a refinement of the base RSLPCD or Dublin Core definition, and there are additional IESR 
comments, all of which are stated in the Application Profile. 

IESR also identified some further properties that were needed within the domain, which is the 
JISC Information Environment, or the application. For example, “usesControlledList” captures 
the subject vocabulary that a collection uses to describe its items. This term was introduced at the 
request of a proposed terminology service (Nicholson et al., 2006), but it will also be useful to a 
portal that wishes to provide to its users an item level search over collections discovered in IESR. 
A second example is the “hasService” property that relates a collection to a service. 
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3.2.  Collection Properties: Adding New Terms to an Application Profile 
Although it was IESR’s intention to use standard metadata terms, it seems generally better to 

introduce a new term when there does not appear to be a suitable existing one. The alternative 
would be to ‘shoehorn’ a new definition into an existing term, or to adopt a term from an obscure 
namespace. A certain amount of care is needed if selecting a term from another namespace. Not 
only does its definition have to be appropriate, it also has to be a property-value assertion as 
Dublin Core terms are. A term that is an element within a hierarchical XML data model is not a 
suitable candidate for inclusion in a DCAP because it can exist only within that hierarchy, with 
no stand-alone meaning. 

Terms within an Application Profile are identified by URIs. Many of the properties in 
RSLPCD are in fact Dublin Core properties so have persistent URIs. The RSLPCD properties 
also have URIs assigned. For new IESR terms, URIs have been assigned within an IESR 
namespace with an intention of persistency. Some terms, e.g. “itemType”, are now available 
within the DCMI Collection Description Terms namespace (DCMI, 2007b). But making changes 
becomes problematic within an existing application, especially when developments of a standard 
are still fluid. So such a term will remain within the IESR namespace, but a comment within the 
Application Profile indicates its mapping to the corresponding standard term. The same 
considerations apply to vocabulary encoding schemes for property values, several being defined 
within the IESR namespace. Currently each IESR term is defined in a human readable ‘mini 
application profile’ with its URI grounded on its position in that document. But ideally they 
should eventually be defined by machine readable RDF assertions. 

3.3.  Service Properties: a Bespoke Application Profile 
IESR Service description is a bespoke schema because there did not appear to be a suitable 

existing scheme to describe a wide range of service types. Other requirements for service 
description were extension to include IESR terms, such as the inter-entity relations, and 
consistency with the ‘flat’ Dublin Core data model, rather than a hierarchical XML model. 
Specific service connection details are captured externally to IESR, via an “interface” property 
whose value is a URI that references machine readable information according to the appropriate 
standard for the service protocol, e.g. Web Services Description Language (WSDL) (Christensen, 
2001). Because IESR is agnostic about service protocol it differs from a UDDI-based registry, 
which would register only WSDL described Web Services.  

The advantage of a bespoke service description schema defined by an Application Profile has 
been the ability to extend it by adding new properties, as further requirements have been 
identified. For example, properties have been added to support the capture of information related 
to a particular authentication model. And during the latest metadata review a property was added 
to enable the description of an OpenURL resolver including its preferred link text in addition to 
an image button. 

Several vocabulary encoding schemes are defined within the IESR namespace for service 
property values. These include a list of available service protocols (or access methods), and an 
indication of the protocol compliance level or version supported. A recent inclusion is a list of 
service functions (or genres). This is based on a possible service function list for ISO 2146 
(Pearce & Gatenby, 2005), with some additions from the e-Framework (e-Framework, 2007) 
service genre list and others identified by IESR. This vocabulary may be refined as its use 
becomes apparent in practice, an option made possible by its definition within the IESR 
namespace. 
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4.  From Application Profile to XML Serialisation 
IESR disseminates data descriptions in XML, apart from its web interface, which displays 

equivalent text fields. Similar XML data is also used internally within the application. Records 
disseminated via Z39.50 are composite description sets containing a collection entity, all its 
associated services and agents, and administrative metadata components for each entity. Records 
disseminated via the OpenURL ‘link to’ resolver interface, or by simply dereferencing a URI, are 
single entities, again a description set containing the entity and its associated administrative 
metadata. From the OAI-PMH interface the single entity metadata record is the sole component 
of the description set, the administrative metadata being within a separate ‘about’ section as 
prescribed by the protocol.  

The IESR XML schema (IESR, 2007c) is based on the Application Profile. The elements 
within an XML record for an entity correspond to the properties defined in the Application 
Profile. XML attributes accord with vocabulary encoding schemes specified in the Application 
Profile. However it was not possible to create an XML schema that is strictly compliant with the 
Application Profile, because of limitations of the XML schema specification and because of some 
imported standard schemas.  

The IESR XML schema does not impose occurrence requirements such as mandatory or non-
repeatable elements. It did not seem possible to define an XML schema that allowed elements to 
be in any order as well as specifying occurrence. Freedom in ordering was thought to be more 
important. Thus within the IESR application, when records are added to the registry, data 
validation checks are made in addition to verifying the XML by parsing.  

Many properties within the IESR schema are from Dublin Core, so the XML schema imports 
the Simple and Qualified Dublin Core XML schemas (DCMI, 2006). The definition of those 
schemas means that element refinements are implicit. So an XML schema cannot explicitly 
reference both an element and its refinement, such as ‘dc:title’ and ‘dcterms:alternative’. Thus 
such element refinements are included within comments in the IESR XML schema.  

Another consequence of importing the original Dublin Core XML schemas, which were 
current when the IESR XML schema was defined, is that vocabulary encoding schemes cannot be 
constrained by the XML schema. Dublin Core XML uses the ‘xsi:type’ attribute to indicate the 
appropriate encoding scheme for a property. Because this attribute is a pre-defined part of the 
XML language it is not possible to constrain its value. Thus vocabulary encoding schemes are 
also indicated within the XML schema by comments and checked by data validation on 
registration.  

It is anticipated that new guidelines about encoding Dublin Core in XML will be available 
soon (Johnston & Powell, 2006a), superseding the version used for IESR. These guidelines will 
allow a vocabulary encoding scheme constraint. However it is unlikely that IESR will change its 
XML schema to conform to these new guidelines because it would imply too radical a change to 
an XML encoding that is already in use. However, IESR will create a DC-Text (Johnston & 
Powell, 2006b) example to illustrate a mapping to the new DC-in-XML guidelines and 
conformance to the Dublin Core Abstract Model.  

5.  Using the Application Profile: a General Service Registry Application 
Profile 

There has been increasing interest in use of the IESR metadata schema by other similar 
initiatives. The documentation of the metadata schema using a DCAP is invaluable in assisting 
such use. In the USA the OCKHAM Digital Library Service Registry (Frumkin, 2004) is using 
IESR metadata to describe its services and collections, as is the registry that is part of the aDORe 
Digital Object Repository (Van de Sompel et al., 2005) at Los Alamos National Laboratory 
Research Library. The Australian Partnership for Sustainable Repositories (APSR, 2007) intends 
to use the IESR metadata schema for their collection registry project. It has become apparent that 
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the constraints defined in the IESR Application Profile specifically for the IESR application may 
be unsuitable for other uses. The occurrence constraints may be too strict and the vocabulary 
encoding schemes may be inappropriate. In particular the aDORe repository, being a machine-
based application, uses a cut-down selection of properties from the IESR Application Profile, 
with no current scenario requiring an agent description.  

Thus a laxer, more general version of the IESR Application Profile has been produced. The 
IESR DCAP document contains both the general Application Profile and the stricter IESR 
Application Profile. IESR constraints above the general ones are introduced with further IESR-
specific application profile attributes: ‘IESR Occurrence’, ‘IESR Condition’, ‘IESR Data Type’ 
and ‘IESR Has Encoding Scheme’.  

It is possible that other users of the IESR schema may wish to extend the metadata to capture 
further information, yet remaining compliant to the IESR Application Profile and hence 
interoperable with IESR. An additional ‘more information’ property (‘seeAlso’) has been added 
to the IESR Application Profile for all three entities, whose value is a URI. Potentially this could 
point to further machine-readable XML providing extra information. Currently this property is 
not used by IESR itself, but may appear in data harvested from elsewhere. Possible uses of ‘more 
information’ may be to indicate official endorsement of a collection, or to capture institution 
profile details for an agent.  

6.  IESR Use Cases 
The specification of the IESR Application Profile and the development of the application has 

largely been a theoretical activity, with only a modicum of experimental use. The purpose of 
IESR is still viewed as visionary, with little general understanding of the use of a middleware 
service registry. The JISC Information Environment is seen by many as simply serving resources 
to people through web pages. In order to suggest ways in which IESR could be employed a set of 
hypothetical use cases with associated scenarios has been developed (Apps, 2007a).  

The over-arching use expected of a service registry is shown in FIG. 3. A ‘Service’ (and 
collection) is ‘registered’, by a Contributor who is probably the service administrator. A ‘Client’, 
such as a portal application, ‘discovers’ a relevant service within the ‘Registry’. It ‘invokes’ the 
service by locating it using the details ascertained from the Registry, and then connecting to it 
possibly using further interface details acquired from the Registry.  

 
FIG. 3. Using a service registry. 

 

6.1.  Use Scenarios 
The primary use case for IESR is dynamic discovery by an application such as a portal, the 

‘client’ of FIG. 3, to support the functionality it provides to its end users. Thus discovery is likely 
to be subject based relevant to a user’s discipline. This use case could fulfil scenarios such as 
Mary, a physicist, using a metasearch portal to perform a literature search about Higgs-Boson 
particles, Mike, a medical researcher using a medical portal to find information about treatments 
for Alzheimer’s disease, Paul using his institutional portal to look for resources about 
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Client Service 

Register Discover 

Invoke 
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tuberculosis transmission, or Sam using a union catalogue to find a book about microlight 
aircraft. Similar use scenarios could be supported by a client application that maintains its own 
local registry by harvesting IESR data, possibly merging it with data from other sources. An 
application may wish to maintain a local registry for performance reasons, to obviate the need for 
repeated network accesses to IESR. Or an application such as a metasearch portal may wish to 
transform IESR data into a proprietary format to populate a local knowledgebase. 

A secondary use case is discovery of information in IESR by a person. A builder of a portal 
application may think that using IESR dynamically is too high a barrier for current development. 
So they could discover details of appropriate collections and services in IESR and use that 
information to plug relevant services into their portal. For some service protocols, in particular 
SOAP Web Services, only this static use of IESR is possible, the semantics of the interfaces of 
such services being proprietary. Use scenarios based on this use case include Jane who wants to 
plug a bibliographic service into an eResearch bioinformatics Grid portal, David who is building 
an OpenURL resolver, and Kate, an aeronautical engineer, who is setting up her personal RSS 
(Wikipedia, 2007b) portal. 

Or IESR could be used by a person simply to search for relevant resources. Use scenarios here 
include Grace, a physics librarian, creating an annotated list of appropriate resources, Margaret, a 
materials science lecturer, finding suitable resources to recommend to her students, Stephen, a 
historian, discovering resources via an IESR search box within his institutional portal, and 
researchers, Colin and Jackie, looking for OpenURL resolvers, either their institution’s or freely 
available. 

Other service applications could use IESR dynamically. Use scenarios include services that 
check the availability or locator addresses of Z39.50 services, and a repository’s format validation 
option. 

6.2.  Interaction Between IESR Use Cases and the Application Profile 
The Application Profile proved invaluable during development of the use cases. It effectively 

lists a set of properties each of which would be expected to have a purpose. It is fairly obvious 
that discovery will use such properties as ‘title’, ‘abstract’ and ‘subject’. But an exhaustive set of 
use cases ideally should include a use for all properties, especially those introduced by IESR, 
such as ‘usesControlledList’, but also those introduced as part of a ‘base’ schema, which is 
RSLPCD in IESR’s case. 

Conversely, analysis of the use cases informed additions to the Application Profile, by 
indicating necessary details currently missing from the IESR metadata, both properties and 
vocabulary terms. For example, use scenarios about research literature searches imply an 
additional collection item type to indicate a ‘scholarly work’. The list of service functions has 
been completely revised recently and can now support use scenarios such as the above example 
concerning format validation. A use scenario about using IESR records to part-populate a local 
OpenURL resolver registry indicated the need for a property to capture a resolver’s preferred link 
text. Several use scenarios suggested the inclusion of a ‘status’ property within the administrative 
metadata to indicate the currency and quality of a record, or whether it has been harvested. 

Hopefully the use scenarios will suggest actual, demonstrable use of IESR. Real testing of 
IESR should further refine the list of properties within the Application Profile. There are 
currently plans to develop actual use scenarios within a JISC Information Environment ‘test bed’ 
project, which will include use of IESR. Concurrently the OCKHAM Digital Library Service 
Registry is conducting a Registry Experiment. Data records will be shared by harvesting between 
the OCKHAM registry and IESR. It is the intention to demonstrate registry use by several 
identified projects funded by the US National Science Digital Library. It is possible that such 
testing will indicate omissions in the IESR metadata, and it will be instructive to observe whether 
some properties are not beneficial. 
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7.  Data Creation 

7.1.  Manual Data Creation 
IESR provides a data Editor, a web form based application, for data contributors to supply 

descriptions of their collections, services and agents. Within the Editor there is a separate input 
form for each entity. The entity input form effectively replicates the properties listed in the 
Application Profile. 

Several issues have arisen from this method of data input, mainly related to how onerous the 
task is. In particular the list of collection properties is long, which reinforces concerns about the 
necessity of some of them. Attempts have been made to improve the input form by reordering so 
that the required properties appear first. A further change suggested is to move some of the 
optional properties to a second ‘page’. A recent study of the properties in relation to the use cases 
has proposed a set of ‘recommended’ properties in the hope of simplifying data input. 

A criticism of IESR data input is that creating service descriptions requires a certain level of 
technical knowledge. However for service descriptions to be used by other applications these 
technical details are necessary. Some service properties are conditional on the value of others. For 
example, ‘interface’ is relevant to only some service protocols, ‘domain available’ is only 
relevant for institution OpenURL resolvers and library catalogues, and some properties are 
applicable only to services that use a particular authentication method. Therefore the Editor 
shows only relevant properties, in an attempt to improve usability. 

A significant issue in data creation is declaration of the relations between the entities. It seems 
difficult to explain the concept of and necessity for this inter-entity linking to contributors. A 
future exercise will be to consider the usability of this application and explore whether this aspect 
can be made easier. It has become clear that data creation according to an Application Profile that 
specifies metadata properties for a single entity is much easier to comprehend. But the multiple, 
related entities of IESR are an essential consequence of the domain model. 

7.2.  Data Harvesting 
An alternative method of data creation is data harvesting from other registries, or from 

contributors who wish to batch load large numbers of records. IESR provides OAI-PMH 
harvesting of collection, service and agent descriptions that conform to the IESR XML schema 
and Application Profile. This should provide a relatively painless way to supply records to IESR, 
although contributors will still need to cope with some of the above considerations. The use of 
OAI-PMH will enable automatic updating of changed records.  

But some registries that have been suggested as possible sources of IESR data descriptions do 
not supply data in IESR XML format, and some have a proprietary API (Application Program 
Interface) rather than a standard OAI-PMH interface. Thus setting up ingest of data from these 
registries will necessitate specific software routines on a case-by-case basis. 

A further issue is that the data in registries identified for possible harvesting is not rich enough 
for inclusion in IESR and may require some augmentation. In all cases where an application 
suggested for harvest does not supply IESR XML, a data mapping will be needed. This will 
consist initially of comparing the potential supply data with the IESR Application Profile, 
illustrating a further important use for an Application Profile. 

8.  Conclusion 
The experience of using an Application Profile in the IESR project has shown it to be 

invaluable for formally documenting a metadata schema. It provides a document for discussion 
during initial development of the schema, and for communicating the metadata schema to 
stakeholders, who may be potential users of the metadata schema or the application. The 
Application Profile provides a clear specification even to those who are not conversant with 



Proc. Int’l Conf. on Dublin Core and Metadata Applications 2007 

71 

metadata schemas. It affords a relatively ‘syntax free’ format understandable by non-technical 
people. The IESR Application Profile is a web document, so it includes hyperlinks between 
various sections and definitions, which hopefully enhance usability by readers. At the same time 
it is regarded as a formal specification with a persistent URI.  

Further experience with employing an Application Profile, within a project outside of the 
digital library domain, has reinforced the belief in its importance as a basis for discussion and 
communication about a metadata schema. Part of the JISC Information Governance Gateway 
(JIGG) project involves developing a repository of Freedom of Information (FOI) disclosure log 
entries that summarise FOI requests received by UK Higher Education Institutions and the 
information released (Apps, 2007b). As well as being searchable the repository will share and 
gather records via OAI-PMH. To support this application a set of fields within an FOI disclosure 
log has been defined, and documented in an Application Profile. The Application Profile proved 
to be an ideal format to assemble, communicate and discuss suitable properties during the process 
of gaining agreement, and for dissemination of the details to other interested parties. This was 
within a sector where there was not general awareness of metadata schemas and no previous 
knowledge of OAI-PMH.  

The Application Profile provides a theoretical specification for an application, translating the 
domain model into concrete data semantics. This paper has shown how the application is built 
around the Application Profile. But the Application Profile is not a static document. It has been 
refined during the on-going experience of developing the project into service. This obviously 
raises versioning issues. IESR maintains a persistent URI to the latest version of the Application 
Profile, actual versions being indicated by their creation date within their URIs. Similar dated 
versioning applies to the XML schema, but generally the dated URI is used where XML 
verification will occur, for example within OAI-PMH records. Once the initial Application 
Profile was defined, changes have been managed by formal metadata reviews at spaced intervals, 
continual changes seeming ill advised. As IESR has matured, consideration has been given to 
backwards compatibility, changes that impact on existing XML data being made only where 
absolutely necessary.  

A concern that is emerging as IESR matures is the quantity of properties specified in the 
Application Profile for each entity. There seems to be a danger, especially when importing an 
existing Application Profile, of including an ambitious number of properties that have a perceived 
theoretical use. This problem can be compounded if stakeholder suggested properties are also 
introduced. A large number of properties discourages data contribution as well as adding to the 
burden of data management. Experience now suggests that some pragmatic decisions should be 
made to pare down the set of properties in an Application Profile to those that have a practical 
use.  

The Application Profile has proved to be useful not just for documenting the metadata schema 
but also for informing the XML schema, application development and possible use scenarios, 
work which fed back into refinement of the Application Profile. Having an Application Profile 
has made it easier to share the IESR metadata schema with others, initiatives that have led to a 
generalisation of the Application Profile.  

Thus experience with developing the IESR indicates that an Application Profile can provide 
the central data specification for an application’s development and promotion. It is at the heart of 
realising the domain model into a concrete application disseminating useful data. 
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