
Proc. Int’l Conf. on Dublin Core and Metadata Applications 2007

63

Using an application profile based service registry

Ann Apps
MIMAS, The University of

Manchester, UK
ann.apps@manchester.ac.uk

Abstract
The aim of the JISC Information Environment Service Registry (IESR) is to assist other
applications, to discover and devolve materials that match their users’ interests in their research,
learning and teaching. This paper describes the experience of using an Application Profile
throughout the application development process, from initial data design, through application
implementation, to scenarios illustrating application use. Also discussed is the benefit of using an
Application Profile to share both a data schema and actual data with similar initiatives.
Keywords: service registry; application profile; metadata schema.

1. Introduction
The JISC Information Environment Service Registry (IESR) (IESR, 2007a) is a middleware,

shared service providing a single central registry within the JISC Information Environment (JISC,
2007). It aims to assist other applications, such as portals, virtual learning applications or research
services, to discover and devolve materials that match their users’ interests in their research,
learning and teaching. It contains information about collections of resources that JISC (the Joint
Information Systems Committee) makes available within UK Higher and Further Education, or
that are useful to this community. Additionally IESR contains details of how to access technical
services, both those that make the collections available, and others that play a significant role in
the information environment. The early development of IESR was described in a previous Dublin
Core conference paper (Apps, 2004) and details of later application developments have been
published (Apps, 2006) more recently.

The design of IESR was documented using a Dublin Core Application Profile (CEN, 2003)
from the outset. This paper considers the advantages of this approach and the evolution of the
Application Profile (IESR, 2007b) as IESR develops into a service with identified uses.

2. The IESR Domain Model
The IESR application model comprises three types of entity: ‘collection’, which is an

aggregation of resources; ‘service’, which is a system that provides one or more functions, being
either an ‘informational’ service providing access to a collection, or a ‘transactional’ stand-alone
service; and ‘agent’, which may be an owner of a collection or an administrator of a service, or
both. Additionally each entity has an associated set of administrative metadata. This model is
depicted in FIG. 1.

The initial design of IESR metadata was informed by the Research Support Libraries
Programme (RSLP) Collection Description Schema (Powell et al., 2000), which was based on
Heaney’s (2000) study “An Analytical Model of Collections and their Catalogues.” There are a
couple of significant differences between the IESR model and the Heaney model, both made for
pragmatic reasons to simplify use of the application. Within IESR the term “service”, which
denotes a single access point to a collection, is actually a conflation of Heaney’s “location” of the
collection and a “service” provided at that location. In situations where a collection is a catalogue,
the catalogue and the collection it describes are conflated into a single collection description of
type ‘catalogue’. This means that users see, for example, a catalogue of items of type ‘image’,

2007 Proc. Int’l Conf. on Dublin Core and Metadata Applications

64

rather than the theoretically correct but potentially confusing catalogue that describes a collection
plus a second description of the collection that contains images.

 FIG. 1. The IESR domain model.

It may seem strange that a ‘service registry’ describes collections. And it may appear more
intuitive to centre the specification around services. Some confusion arises from the various
overloaded meanings of the word ‘service’. Within IESR context, a service is a low level,
technical access point to a data collection, or a broker service such as an OpenURL (Apps &
MacIntyre, 2006) resolver (that provides access to resources appropriate for a user’s context), or a
component of a technical Service Oriented Architecture (Wikipedia, 2007a). In reality, within the
JISC Information Environment, the function of many services is to provide access to a data
collection, so some information about a collection is needed. Describing the collection as part of a
service becomes complicated when there is more than one service available to access a collection,
e.g. ‘find’ via a web search, ‘find’ using Z39.50 (a standard machine protocol for information
retrieval) (ANSI/NISO, 1995), and an Open Archives Protocol for Metadata Harvesting (OAI-
PMH) (Lagoze et al., 2004) ‘harvest’. The model is much cleaner when collection-based as well
as being based on the formal modelling described above. In practice the collection-based IESR
model works well.

3. The IESR Application Profile
The IESR Application Profile documents the IESR metadata, which is a set of properties used

to describe each entity. It defines constraints such as which properties are mandatory and which
may be repeated. It is based on the Dublin Core Application Profile (DCAP) Guidelines (CEN,
2003), but with some variations. Mainly for consideration of the document length, only those
application profile attributes necessary to define each property are included. The attributes ‘type
of term’, ‘refines’, ‘refined by’ and ‘similar to’ are not used at all because, although they would
define theoretical characteristics of the metadata properties, they are not necessary to the
application. In the first version of the Application Profile the source definitions of and comments
about properties were not included, again to reduce the size of the document. However these have
now been included because it seems instructive to be able to view the source and IESR
definitions in one place.

Various additional application profile attributes have been included, because it seems more
efficient to include all documentation of the metadata properties in one place. The first extra
attribute introduced was ‘IESR Searchable’. This indicates which properties are searchable via
the IESR application’s machine interface, and documents the associated search fields
corresponding to the property. Further IESR application profile attributes have since been
included to provide different levels of compliance as described below in Section 5. An example
of an entry in the Application Profile for a single property is shown in FIG. 2.

Collection

Admin

Service Agent

Admin Admin

owner
 [n:m]

hasService
 [1:m]

administrator
 [n:m] about

 [1:1]

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2007

65

The DCAP Guidelines describe an application profile that captures a single entity. This
corresponds to a single resource description within the Dublin Core Abstract Model (DCAM)
(Powell et al., 2005), which specifies a flat set of properties for a single resource, with no
provision for any composite properties according to any hierarchical model and syntax. Thus
some extension of the DCAP has been required to capture the four entities of IESR.
Dissemination of IESR metadata comprising several entity descriptions corresponds to a
“description set” within the DCAM. In order to accommodate the several entities of IESR the
DCAP is composite, split into several sections, one for each entity, preceded by a section that
specifies the entities. Within the metadata itself there are properties that capture the relations
between entities (“hasService”, “owner” and “administrator” shown in FIG. 1 and their inverses).

Name usesControlledList
Term URI http://iesr.ac.uk/terms/#usesControlledList
Label Uses Controlled List
Defined By http://iesr.ac.uk/terms/#usesControlledList
Source Definition A classification scheme or thesaurus used by the collection
Has Encoding Scheme http://iesr.ac.uk/terms/#CtrldVocabsList
Data Type <string>
Occurrence Min: 0; Max: unbounded
IESR Searchable 20, 1040, 1112, 1016, 1017, 1035; classn, anywhere

FIG. 2. IESR Application Profile entry for a Collection property.

3.1. Collection Properties: Importing and Customising an Existing Application
Profile

As explained above, the IESR collection metadata is based on the RSLP Collection
Description Schema (RSLPCD), which at the time when the IESR project started appeared to be
an appropriate schema to use for collection description, even though it was a ‘de facto’ rather
than ‘official’ standard. The DCMI Collection Description Application Profile (DCMI, 2007a)
and the NISO Metasearch Initiative Collection Description Specification (ANSI/NISO, 2005)
have since been derived from RSLPCD, so IESR has tried to maintain consistency with these
schemas and has fed experience into their development.

RSLPCD was developed to describe both physical and electronic collections within a range of
domains, including museums, archives and libraries. Because IESR describes electronic
collections, primarily to support discovery, not all of the RSLPCD properties have been included
in IESR. For example records management information such as details about accrual, legal and
custodial history were not thought relevant within IESR. In the early stages of the IESR project
potential stakeholders were surveyed about their possible use and requirements of a registry of
collections and services. This provided initial input to decisions on the properties that would be
needed or useful. These decisions have been refined over time as use has been made of IESR with
‘formal’ metadata reviews undertaken at intervals. In some cases the IESR definition of a term is
a refinement of the base RSLPCD or Dublin Core definition, and there are additional IESR
comments, all of which are stated in the Application Profile.

IESR also identified some further properties that were needed within the domain, which is the
JISC Information Environment, or the application. For example, “usesControlledList” captures
the subject vocabulary that a collection uses to describe its items. This term was introduced at the
request of a proposed terminology service (Nicholson et al., 2006), but it will also be useful to a
portal that wishes to provide to its users an item level search over collections discovered in IESR.
A second example is the “hasService” property that relates a collection to a service.

2007 Proc. Int’l Conf. on Dublin Core and Metadata Applications

66

3.2. Collection Properties: Adding New Terms to an Application Profile
Although it was IESR’s intention to use standard metadata terms, it seems generally better to

introduce a new term when there does not appear to be a suitable existing one. The alternative
would be to ‘shoehorn’ a new definition into an existing term, or to adopt a term from an obscure
namespace. A certain amount of care is needed if selecting a term from another namespace. Not
only does its definition have to be appropriate, it also has to be a property-value assertion as
Dublin Core terms are. A term that is an element within a hierarchical XML data model is not a
suitable candidate for inclusion in a DCAP because it can exist only within that hierarchy, with
no stand-alone meaning.

Terms within an Application Profile are identified by URIs. Many of the properties in
RSLPCD are in fact Dublin Core properties so have persistent URIs. The RSLPCD properties
also have URIs assigned. For new IESR terms, URIs have been assigned within an IESR
namespace with an intention of persistency. Some terms, e.g. “itemType”, are now available
within the DCMI Collection Description Terms namespace (DCMI, 2007b). But making changes
becomes problematic within an existing application, especially when developments of a standard
are still fluid. So such a term will remain within the IESR namespace, but a comment within the
Application Profile indicates its mapping to the corresponding standard term. The same
considerations apply to vocabulary encoding schemes for property values, several being defined
within the IESR namespace. Currently each IESR term is defined in a human readable ‘mini
application profile’ with its URI grounded on its position in that document. But ideally they
should eventually be defined by machine readable RDF assertions.

3.3. Service Properties: a Bespoke Application Profile
IESR Service description is a bespoke schema because there did not appear to be a suitable

existing scheme to describe a wide range of service types. Other requirements for service
description were extension to include IESR terms, such as the inter-entity relations, and
consistency with the ‘flat’ Dublin Core data model, rather than a hierarchical XML model.
Specific service connection details are captured externally to IESR, via an “interface” property
whose value is a URI that references machine readable information according to the appropriate
standard for the service protocol, e.g. Web Services Description Language (WSDL) (Christensen,
2001). Because IESR is agnostic about service protocol it differs from a UDDI-based registry,
which would register only WSDL described Web Services.

The advantage of a bespoke service description schema defined by an Application Profile has
been the ability to extend it by adding new properties, as further requirements have been
identified. For example, properties have been added to support the capture of information related
to a particular authentication model. And during the latest metadata review a property was added
to enable the description of an OpenURL resolver including its preferred link text in addition to
an image button.

Several vocabulary encoding schemes are defined within the IESR namespace for service
property values. These include a list of available service protocols (or access methods), and an
indication of the protocol compliance level or version supported. A recent inclusion is a list of
service functions (or genres). This is based on a possible service function list for ISO 2146
(Pearce & Gatenby, 2005), with some additions from the e-Framework (e-Framework, 2007)
service genre list and others identified by IESR. This vocabulary may be refined as its use
becomes apparent in practice, an option made possible by its definition within the IESR
namespace.

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2007

67

4. From Application Profile to XML Serialisation
IESR disseminates data descriptions in XML, apart from its web interface, which displays

equivalent text fields. Similar XML data is also used internally within the application. Records
disseminated via Z39.50 are composite description sets containing a collection entity, all its
associated services and agents, and administrative metadata components for each entity. Records
disseminated via the OpenURL ‘link to’ resolver interface, or by simply dereferencing a URI, are
single entities, again a description set containing the entity and its associated administrative
metadata. From the OAI-PMH interface the single entity metadata record is the sole component
of the description set, the administrative metadata being within a separate ‘about’ section as
prescribed by the protocol.

The IESR XML schema (IESR, 2007c) is based on the Application Profile. The elements
within an XML record for an entity correspond to the properties defined in the Application
Profile. XML attributes accord with vocabulary encoding schemes specified in the Application
Profile. However it was not possible to create an XML schema that is strictly compliant with the
Application Profile, because of limitations of the XML schema specification and because of some
imported standard schemas.

The IESR XML schema does not impose occurrence requirements such as mandatory or non-
repeatable elements. It did not seem possible to define an XML schema that allowed elements to
be in any order as well as specifying occurrence. Freedom in ordering was thought to be more
important. Thus within the IESR application, when records are added to the registry, data
validation checks are made in addition to verifying the XML by parsing.

Many properties within the IESR schema are from Dublin Core, so the XML schema imports
the Simple and Qualified Dublin Core XML schemas (DCMI, 2006). The definition of those
schemas means that element refinements are implicit. So an XML schema cannot explicitly
reference both an element and its refinement, such as ‘dc:title’ and ‘dcterms:alternative’. Thus
such element refinements are included within comments in the IESR XML schema.

Another consequence of importing the original Dublin Core XML schemas, which were
current when the IESR XML schema was defined, is that vocabulary encoding schemes cannot be
constrained by the XML schema. Dublin Core XML uses the ‘xsi:type’ attribute to indicate the
appropriate encoding scheme for a property. Because this attribute is a pre-defined part of the
XML language it is not possible to constrain its value. Thus vocabulary encoding schemes are
also indicated within the XML schema by comments and checked by data validation on
registration.

It is anticipated that new guidelines about encoding Dublin Core in XML will be available
soon (Johnston & Powell, 2006a), superseding the version used for IESR. These guidelines will
allow a vocabulary encoding scheme constraint. However it is unlikely that IESR will change its
XML schema to conform to these new guidelines because it would imply too radical a change to
an XML encoding that is already in use. However, IESR will create a DC-Text (Johnston &
Powell, 2006b) example to illustrate a mapping to the new DC-in-XML guidelines and
conformance to the Dublin Core Abstract Model.

5. Using the Application Profile: a General Service Registry Application
Profile

There has been increasing interest in use of the IESR metadata schema by other similar
initiatives. The documentation of the metadata schema using a DCAP is invaluable in assisting
such use. In the USA the OCKHAM Digital Library Service Registry (Frumkin, 2004) is using
IESR metadata to describe its services and collections, as is the registry that is part of the aDORe
Digital Object Repository (Van de Sompel et al., 2005) at Los Alamos National Laboratory
Research Library. The Australian Partnership for Sustainable Repositories (APSR, 2007) intends
to use the IESR metadata schema for their collection registry project. It has become apparent that

2007 Proc. Int’l Conf. on Dublin Core and Metadata Applications

68

the constraints defined in the IESR Application Profile specifically for the IESR application may
be unsuitable for other uses. The occurrence constraints may be too strict and the vocabulary
encoding schemes may be inappropriate. In particular the aDORe repository, being a machine-
based application, uses a cut-down selection of properties from the IESR Application Profile,
with no current scenario requiring an agent description.

Thus a laxer, more general version of the IESR Application Profile has been produced. The
IESR DCAP document contains both the general Application Profile and the stricter IESR
Application Profile. IESR constraints above the general ones are introduced with further IESR-
specific application profile attributes: ‘IESR Occurrence’, ‘IESR Condition’, ‘IESR Data Type’
and ‘IESR Has Encoding Scheme’.

It is possible that other users of the IESR schema may wish to extend the metadata to capture
further information, yet remaining compliant to the IESR Application Profile and hence
interoperable with IESR. An additional ‘more information’ property (‘seeAlso’) has been added
to the IESR Application Profile for all three entities, whose value is a URI. Potentially this could
point to further machine-readable XML providing extra information. Currently this property is
not used by IESR itself, but may appear in data harvested from elsewhere. Possible uses of ‘more
information’ may be to indicate official endorsement of a collection, or to capture institution
profile details for an agent.

6. IESR Use Cases
The specification of the IESR Application Profile and the development of the application has

largely been a theoretical activity, with only a modicum of experimental use. The purpose of
IESR is still viewed as visionary, with little general understanding of the use of a middleware
service registry. The JISC Information Environment is seen by many as simply serving resources
to people through web pages. In order to suggest ways in which IESR could be employed a set of
hypothetical use cases with associated scenarios has been developed (Apps, 2007a).

The over-arching use expected of a service registry is shown in FIG. 3. A ‘Service’ (and
collection) is ‘registered’, by a Contributor who is probably the service administrator. A ‘Client’,
such as a portal application, ‘discovers’ a relevant service within the ‘Registry’. It ‘invokes’ the
service by locating it using the details ascertained from the Registry, and then connecting to it
possibly using further interface details acquired from the Registry.

FIG. 3. Using a service registry.

6.1. Use Scenarios
The primary use case for IESR is dynamic discovery by an application such as a portal, the

‘client’ of FIG. 3, to support the functionality it provides to its end users. Thus discovery is likely
to be subject based relevant to a user’s discipline. This use case could fulfil scenarios such as
Mary, a physicist, using a metasearch portal to perform a literature search about Higgs-Boson
particles, Mike, a medical researcher using a medical portal to find information about treatments
for Alzheimer’s disease, Paul using his institutional portal to look for resources about

Registry

Client Service

Register Discover

Invoke

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2007

69

tuberculosis transmission, or Sam using a union catalogue to find a book about microlight
aircraft. Similar use scenarios could be supported by a client application that maintains its own
local registry by harvesting IESR data, possibly merging it with data from other sources. An
application may wish to maintain a local registry for performance reasons, to obviate the need for
repeated network accesses to IESR. Or an application such as a metasearch portal may wish to
transform IESR data into a proprietary format to populate a local knowledgebase.

A secondary use case is discovery of information in IESR by a person. A builder of a portal
application may think that using IESR dynamically is too high a barrier for current development.
So they could discover details of appropriate collections and services in IESR and use that
information to plug relevant services into their portal. For some service protocols, in particular
SOAP Web Services, only this static use of IESR is possible, the semantics of the interfaces of
such services being proprietary. Use scenarios based on this use case include Jane who wants to
plug a bibliographic service into an eResearch bioinformatics Grid portal, David who is building
an OpenURL resolver, and Kate, an aeronautical engineer, who is setting up her personal RSS
(Wikipedia, 2007b) portal.

Or IESR could be used by a person simply to search for relevant resources. Use scenarios here
include Grace, a physics librarian, creating an annotated list of appropriate resources, Margaret, a
materials science lecturer, finding suitable resources to recommend to her students, Stephen, a
historian, discovering resources via an IESR search box within his institutional portal, and
researchers, Colin and Jackie, looking for OpenURL resolvers, either their institution’s or freely
available.

Other service applications could use IESR dynamically. Use scenarios include services that
check the availability or locator addresses of Z39.50 services, and a repository’s format validation
option.

6.2. Interaction Between IESR Use Cases and the Application Profile
The Application Profile proved invaluable during development of the use cases. It effectively

lists a set of properties each of which would be expected to have a purpose. It is fairly obvious
that discovery will use such properties as ‘title’, ‘abstract’ and ‘subject’. But an exhaustive set of
use cases ideally should include a use for all properties, especially those introduced by IESR,
such as ‘usesControlledList’, but also those introduced as part of a ‘base’ schema, which is
RSLPCD in IESR’s case.

Conversely, analysis of the use cases informed additions to the Application Profile, by
indicating necessary details currently missing from the IESR metadata, both properties and
vocabulary terms. For example, use scenarios about research literature searches imply an
additional collection item type to indicate a ‘scholarly work’. The list of service functions has
been completely revised recently and can now support use scenarios such as the above example
concerning format validation. A use scenario about using IESR records to part-populate a local
OpenURL resolver registry indicated the need for a property to capture a resolver’s preferred link
text. Several use scenarios suggested the inclusion of a ‘status’ property within the administrative
metadata to indicate the currency and quality of a record, or whether it has been harvested.

Hopefully the use scenarios will suggest actual, demonstrable use of IESR. Real testing of
IESR should further refine the list of properties within the Application Profile. There are
currently plans to develop actual use scenarios within a JISC Information Environment ‘test bed’
project, which will include use of IESR. Concurrently the OCKHAM Digital Library Service
Registry is conducting a Registry Experiment. Data records will be shared by harvesting between
the OCKHAM registry and IESR. It is the intention to demonstrate registry use by several
identified projects funded by the US National Science Digital Library. It is possible that such
testing will indicate omissions in the IESR metadata, and it will be instructive to observe whether
some properties are not beneficial.

2007 Proc. Int’l Conf. on Dublin Core and Metadata Applications

70

7. Data Creation

7.1. Manual Data Creation
IESR provides a data Editor, a web form based application, for data contributors to supply

descriptions of their collections, services and agents. Within the Editor there is a separate input
form for each entity. The entity input form effectively replicates the properties listed in the
Application Profile.

Several issues have arisen from this method of data input, mainly related to how onerous the
task is. In particular the list of collection properties is long, which reinforces concerns about the
necessity of some of them. Attempts have been made to improve the input form by reordering so
that the required properties appear first. A further change suggested is to move some of the
optional properties to a second ‘page’. A recent study of the properties in relation to the use cases
has proposed a set of ‘recommended’ properties in the hope of simplifying data input.

A criticism of IESR data input is that creating service descriptions requires a certain level of
technical knowledge. However for service descriptions to be used by other applications these
technical details are necessary. Some service properties are conditional on the value of others. For
example, ‘interface’ is relevant to only some service protocols, ‘domain available’ is only
relevant for institution OpenURL resolvers and library catalogues, and some properties are
applicable only to services that use a particular authentication method. Therefore the Editor
shows only relevant properties, in an attempt to improve usability.

A significant issue in data creation is declaration of the relations between the entities. It seems
difficult to explain the concept of and necessity for this inter-entity linking to contributors. A
future exercise will be to consider the usability of this application and explore whether this aspect
can be made easier. It has become clear that data creation according to an Application Profile that
specifies metadata properties for a single entity is much easier to comprehend. But the multiple,
related entities of IESR are an essential consequence of the domain model.

7.2. Data Harvesting
An alternative method of data creation is data harvesting from other registries, or from

contributors who wish to batch load large numbers of records. IESR provides OAI-PMH
harvesting of collection, service and agent descriptions that conform to the IESR XML schema
and Application Profile. This should provide a relatively painless way to supply records to IESR,
although contributors will still need to cope with some of the above considerations. The use of
OAI-PMH will enable automatic updating of changed records.

But some registries that have been suggested as possible sources of IESR data descriptions do
not supply data in IESR XML format, and some have a proprietary API (Application Program
Interface) rather than a standard OAI-PMH interface. Thus setting up ingest of data from these
registries will necessitate specific software routines on a case-by-case basis.

A further issue is that the data in registries identified for possible harvesting is not rich enough
for inclusion in IESR and may require some augmentation. In all cases where an application
suggested for harvest does not supply IESR XML, a data mapping will be needed. This will
consist initially of comparing the potential supply data with the IESR Application Profile,
illustrating a further important use for an Application Profile.

8. Conclusion
The experience of using an Application Profile in the IESR project has shown it to be

invaluable for formally documenting a metadata schema. It provides a document for discussion
during initial development of the schema, and for communicating the metadata schema to
stakeholders, who may be potential users of the metadata schema or the application. The
Application Profile provides a clear specification even to those who are not conversant with

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2007

71

metadata schemas. It affords a relatively ‘syntax free’ format understandable by non-technical
people. The IESR Application Profile is a web document, so it includes hyperlinks between
various sections and definitions, which hopefully enhance usability by readers. At the same time
it is regarded as a formal specification with a persistent URI.

Further experience with employing an Application Profile, within a project outside of the
digital library domain, has reinforced the belief in its importance as a basis for discussion and
communication about a metadata schema. Part of the JISC Information Governance Gateway
(JIGG) project involves developing a repository of Freedom of Information (FOI) disclosure log
entries that summarise FOI requests received by UK Higher Education Institutions and the
information released (Apps, 2007b). As well as being searchable the repository will share and
gather records via OAI-PMH. To support this application a set of fields within an FOI disclosure
log has been defined, and documented in an Application Profile. The Application Profile proved
to be an ideal format to assemble, communicate and discuss suitable properties during the process
of gaining agreement, and for dissemination of the details to other interested parties. This was
within a sector where there was not general awareness of metadata schemas and no previous
knowledge of OAI-PMH.

The Application Profile provides a theoretical specification for an application, translating the
domain model into concrete data semantics. This paper has shown how the application is built
around the Application Profile. But the Application Profile is not a static document. It has been
refined during the on-going experience of developing the project into service. This obviously
raises versioning issues. IESR maintains a persistent URI to the latest version of the Application
Profile, actual versions being indicated by their creation date within their URIs. Similar dated
versioning applies to the XML schema, but generally the dated URI is used where XML
verification will occur, for example within OAI-PMH records. Once the initial Application
Profile was defined, changes have been managed by formal metadata reviews at spaced intervals,
continual changes seeming ill advised. As IESR has matured, consideration has been given to
backwards compatibility, changes that impact on existing XML data being made only where
absolutely necessary.

A concern that is emerging as IESR matures is the quantity of properties specified in the
Application Profile for each entity. There seems to be a danger, especially when importing an
existing Application Profile, of including an ambitious number of properties that have a perceived
theoretical use. This problem can be compounded if stakeholder suggested properties are also
introduced. A large number of properties discourages data contribution as well as adding to the
burden of data management. Experience now suggests that some pragmatic decisions should be
made to pare down the set of properties in an Application Profile to those that have a practical
use.

The Application Profile has proved to be useful not just for documenting the metadata schema
but also for informing the XML schema, application development and possible use scenarios,
work which fed back into refinement of the Application Profile. Having an Application Profile
has made it easier to share the IESR metadata schema with others, initiatives that have led to a
generalisation of the Application Profile.

Thus experience with developing the IESR indicates that an Application Profile can provide
the central data specification for an application’s development and promotion. It is at the heart of
realising the domain model into a concrete application disseminating useful data.

Acknowledgements
IESR is a ‘service in development’ project funded by the Joint Information Systems Committee
(JISC) of the UK Higher and Further Education Funding Councils as part of its ‘shared
infrastructure services programme’.

2007 Proc. Int’l Conf. on Dublin Core and Metadata Applications

72

References
ANSI/NISO. (1995). Z39.50-1995 Informational Retrieval. Retrieved March 16, 2007, from

http://www.niso.org/standards/resources/Z39-50.pdf.
ANSI/NISO. (2005). Z39.91-200x Collection Description Specification. Retrieved March 16, 2007, from

http://www.niso.org/standards/resources/Z39-91-DSFTU.pdf.
Apps, Ann, and Ross MacIntyre. (2006, May). Why OpenURL? D-Lib Magazine, 12(5). Retrieved March 16, 2007,

from http://www.dlib.org/dlib/may06/apps/05apps.html.
Apps, Ann. (2004). A registry of collections and their services: From metadata to implementation. Proceedings of the

International Conference on Dublin Core and Metadata Applications, Shanghai, China (pp. 67-73).
Apps, Ann. (2006). Disseminating service registry records. Proceedings of the Tenth International Conference on

Electronic Publishing, Bansko, Bulgaria (pp. 37-47).
Apps, Ann. (2007a). IESR use cases. Retrieved March 16, 2007, from http://iesr.ac.uk/use/use-cases/.
Apps, Ann. (2007b). Disclosing freedom of information releases. Proceedings of the Eleventh International Conference

on Electronic Publishing, Vienna, Austria (pp. 425-434).
APSR. (2007). Australian Partnership for Sustainable Repositories: APSR Projects. Retrieved March 16, 2007, from

http://www.apsr.edu.au/currentprojects/index.htm.
CEN. (2003). CWA 14855: Dublin Core Application Profile Guidelines. Retrieved March 16, 2007, from

ftp://ftp.cenorm.be/PUBLIC/CWAs/e-Europe/MMI-DC/cwa14855-00-2003-Nov.pdf.
Christensen, Erik, Francisco Curbera, Greg Meredith and Sanjiva Weerawarana. (2001). Web Services Description

Language (WSDL) 1.1. Retrieved March 16, 2007, from http://www.w3.org/TR/wsdl.
DCMI. (2006). XML schemas to support the Guidelines for Implementing DC in XML recommendation. Retrieved

March 16, 2007, from http://www.dublincore.org/schemas/xmls/.
DCMI. (2007a). Dublin Core Collection Description Application Profile. Retrieved March 16, 2007, from

http://www.dublincore.org/groups/collections/collection-application-profile/.
DCMI. (2007b). Dublin Core Collection Description Terms. Retrieved March 16, 2007, from

http://www.dublincore.org/groups/collections/collection-terms/.
e-Framework. (2007). Service Genre Registry. Retrieved March 16, 2007, from http://www.e-

framework.org/Services/Genres/ServiceGenreRegistry/tabid/655/Default.aspx.
Frumkin, Jeremy. (2004). The problem of mainstreaming digital libraries. OCLC Systems and Services: International

Digital Library Perspectives, 20(3) pp 106-109.
Heaney, Michael. (2000). An analytical model of collections and their catalogues. Retrieved March 16, 2007, from

http://www.ukoln.ac.uk/metadata/rslp/model/amcc-v31.pdf.
IESR. (2007a). JISC Information Environment Service Registry. Retrieved March 16, 2007, from http://iesr.ac.uk/.
IESR. (2007b). IESR Application Profile. Retrieved March 16, 2007, from http://iesr.ac.uk/profile/.
IESR. (2007c). IESR XML Schema. Retrieved March 16, 2007, from http://iesr.ac.uk/schemas/xsd/iesr.xsd.
JISC. (2007). JISC information environment. Retrieved March 16, 2007, from

http://www.jisc.ac.uk/whatwedo/themes/information_environment.aspx.
Johnston, Pete, and Andy Powell. (2006)(a). Expressing Dublin Core metadata using XML. Retrieved March 16, 2007,

from http://dublincore.org/documents/dc-xml/.
Johnston, Pete, and Andy Powell. (2006)(b). DC-Text: A simple text-based format for DC metadata. Proceedings of the

International Conference on Dublin Core and Metadata Applications, Mexico (pp. 24-30).
Lagoze, Carl, Herbert Van de Sompel, Michael Nelson, and Simeon Warner. (2004). The Open Archives Initiative

Protocol for Metadata Harvesting. Retrieved March 16, 2007, from
http://www.openarchives.org/OAI/openarchivesprotocol.html.

Nicholson, Dennis, Alan Dawson, and Ali Shiri. (2006, May). HILT: A terminology mapping service with a DDC
spine. Cataloging and Classification Quarterly, 42(3/4), 187-200. Retrieved March 16, 2007, from
http://eprints.rclis.org/archive/00008767/.

Pearce, Judith, and Janifer Gatenby. (2005). New frameworks for resource discovery and delivery. Retrieved March 16,
2007, from http://www.nla.gov.au/nla/staffpaper/2005/pearce1.html.

Powell, Andy, Michael Heaney, and Lorcan Dempsey. (2000, September). RSLP Collection Description. D-Lib
Magazine, 6(9). Retrieved March 16, 2007, from http://www.dlib.org/dlib/september00/powell/09powell.html.

Powell, Andy, Mikael Nilsson, Ambjorn Naeve, and Pete Johnston. (2005). DCMI Abstract Model. Retrieved March
16, 2007, from http://www.dublincore.org/documents/abstract-model/.

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2007

73

Van de Sompel, Herbert, Jeroen Bekaert, Xiaoming Liu, Luda Balakireva, and Thorsten Schwander. (2005). aDORe: A
Modular, Standards-Based Digital Object Repository. The Computer Journal, 48(5), 514-535.

Wikipedia contributors. (2007a). Service-oriented architecture. In Wikipedia, The Free Encyclopedia. Retrieved March
16, 2007, from http://en.wikipedia.org/w/index.php?title=Service-oriented_architecture&oldid=115525599.

Wikipedia contributors. (2007b). RSS. In Wikipedia, the tree encyclopedia. Retrieved March 16, 2007, from
http://en.wikipedia.org/w/index.php?title=RSS&oldid=115357482.

