
Proc. Int’l Conf. on Dublin Core and Metadata Applications 2007

53

Application profiles: Exposing and enforcing metadata quality

Diane I. Hillmann
Cornell University
dih1@cornell.edu

Jon Phipps
Cornell University
jp298@cornell.edu

Abstract
In this paper, we explore a range of issues yet to be addressed in the large-scale use of application
profiles. While considerable attention has been paid to human-readable application profiles, there
is a growing need for machine-readable application profiles that can support quality control
mechanisms including, but not limited to, data validation. We examine these issues in the context
of the evolving Semantic Web and the DCMI commitment to RDF and the challenges presented.
We frame the discussion in terms of select functions to be served by application profiles and our
notion of data profiles. While much remains to be done to address these issues, positive
movement toward solutions is dependent on the appropriate framing of those issues in terms of
the needs of large-scale applications such as metadata aggregators.
Keywords: metadata quality; metadata validation; machine-readable application profiles.

1. Introduction
Since the groundbreaking article by Heery and Patel introducing the idea of “Application

Profiles,” considerable effort has been expended in discussing the specification of application
profiles in the context of Dublin Core (Heery & Patel, 2000). Two important early documents
sponsored by the European Committee on Standardization (CEN) set the stage for technical
specification (CEN, 2003 & 2005). In this rapidly changing context, several communities bravely
created extensive APs for their communities (DCMI Libraries Community, 2004; DCMI
Collection Description Community, 2007).

But although considerable progress has been made in the area of technical specifications for
APs in general, as well as the conventions for expressing human-readable APs as HTML
documents, little discussion or experimentation has been expended on the considerable problem
of machine-readable Application Profile implementation. As the early phase of work with APs
draws to a close, this gap looms large. To a great extent we have been caught flat-footed:
expressing the value of APs largely in the context of their human usable form, and assuming that
they will evolve naturally to function as machine-readable information. However, the specific
functions that might be addressed by machine-readable APs have remained vague and largely
unexplored.

Perhaps Heery & Patel were more prescient than they knew, when they said in the introduction
to their 2000 article:

The experience of implementers is critical to effective metadata management, and this
paper tries to look at the way the Dublin Core Metadata Element Set (and other metadata
standards) are used in the real world. Our involvement within the DESIRE project rein-
forced what is common knowledge: implementers use standard metadata schemas in a
pragmatic way. This is not new, to re-work Diane Hillmann’s maxim ‘there are no
metadata police’, implementers will bend and fit metadata schemas for their own purposes
(Heery & Patel, 2000).

During the same period, several developments in the general digital library arena caused the
idea of Application Profiles to be enthusiastically received. Early implementations of Dublin Core

2007 Proc. Int’l Conf. on Dublin Core and Metadata Applications

54

were largely used within projects—data sharing was not yet easily accomplished. By 1999 early
data sharing efforts based on cross repository searching were producing disappointing results:

Digital library experience suggested that cross searching does not scale well, at least
partly because the search service degrades to the level of the slowest and least reliable
server in the cross search set. For example, NCSTRL found that distributed searching of
a small number of nodes was viable, but that performance was very bad over 100 nodes.
In the UK, the Resource Discovery Network (RDN) was finding that even with only five
subject gateways in its cross search there were problems of poor performance and in the
provision of a browse interface, and developers were looking for a feasible centralized
database solution. The more servers are cross-searched, the higher are the chances of
encountering one or more slow or unreliable servers (Open Archives Forum, n.d.).

After a short flirtation with a very small element set optimized for preprints, the newly
launched Open Archives Initiative specified Simple Dublin Core as their minimal element set,
and metadata harvesting was born. The OAI community, originally organized around the narrow
goal of enabling better searching of scientific preprints, realized quickly that a broader focus on
general resource sharing was politically attractive and practically within reach. During the same
period, the Dublin Core community, responding to requests for richness beyond the initial 15
elements, approved the first group of qualifiers and, perhaps more importantly for this discussion,
introduced “encoding schemes” as the method for enabling controlled vocabulary use within
Dublin Core (DCMI, 2000).

Once large scale data sharing and aggregation became a reality with the birth of the Open
Archives Initiative Protocol for Metadata Harvesting (OAI-PMH), and Dublin Core grew beyond
its simple origins, communities and implementers needed a way to express their intentions and
expectations beyond the technical specifications of XML. Application Profiles, as described by
Heery and Patel, did two things: they broke the perceived boundaries of established metadata
schemas, and recognized that implementers both needed and demanded more flexibility to
achieve their aims.

2. Metadata Quality Criteria and Measurement
Early conversations about metadata quality, particularly in the library community, were based

on experience with MARC data distributed via bibliographic utilities. The library community was
an early adopter of computer technology and data distribution standards, but as with many highly
evolved, early adopting communities, found it increasingly difficult to accommodate the high rate
of change as other metadata standards joined the fray. Bruce and Hillmann (2004), attempting to
re-start the quality conversation to include newer models of metadata aggregation, defined seven
criteria for determining metadata quality: completeness, accuracy, provenance, conformance to
expectations, logical consistency and coherence, timeliness, and accessibility. Although the
criteria provide opportunities to converse about quality, without ways to measure that quality,
they remain frustratingly beyond reach. With the Application Profiles added to the mix as a
template for expectation, we can begin to see the potential to compare actual data to that template
and quantify the results.

One example where potential for quantifying exists is with the criteria of completeness.
Without a notion of expectation it is difficult to determine how complete an individual metadata
record or an aggregation of records might be. But if, for example, the Application Profile requires
Title, Identifier and Description, and the metadata lacks any Descriptions, it is, by definition,
incomplete. In this case the use of Obligation data from the Application Profile allows for a
simple but quantifiable determination of completeness, though not necessarily weighted. Related
to completeness is conformance to expectations, where the determination of quality results is a bit
more complex to define. If an Application Profile includes descriptions of a condition when a
value should be present, and that condition cannot be expressed programmatically, it would be
difficult to determine by machine whether or not the metadata conforms in that regard to the

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2007

55

Application Profile, although presumably a human with adequate tools could determine
conformity in some of those cases. Bruce and Hillmann provide some insight into the important
differences between the two criteria:

Element sets and application profiles should, in general, contain those elements that the
community would reasonably expect to find. They should not contain false promises, i.e.,
elements that are not likely to be used because they are superfluous, irrelevant, or
impossible to implement. Controlled vocabularies should be chosen with the needs of the
intended audience in mind, and explicitly exposed to downstream users. Sometimes
problems with conformance to expectations appear in disguise. Moen et al. correctly
point out that problems with omitted metadata frequently occur because users see the
particular element as irrelevant or unnecessary, so that what appears at first blush to be a
completeness problem is in fact a problem with conformance to expectations.
Finally, metadata choices need to reflect community thinking and expectations about
necessary compromises in implementation. It is seldom possible for a metadata project to
implement everything that anyone would want; most often, the metadata provider cannot
afford to make a project unimpeachable by making it comprehensive. It is therefore
important that community expectations be solicited, considered, and managed realistically.
Better an agreed-upon compromise that is well executed and documented than an approach
that aspires to be all things to all people and ends up poorly and unevenly implemented
(Bruce & Hillmann, 2004).

Provenance is difficult to determine with most metadata unless there is a data wrapper (such as
provided by OAI-PMH) which contains provenance information, and that information is
maintained properly. Provenance is to some extent administrative in nature, and its presence and
reliability depends on the policies of the data provider, and potentially a whole chain of data
providers that may have touched the metadata in past transactions. At one level, the presence of
provenance information is a good beginning point, but without better tracking of where metadata
has been and how it has been modified (not really possible using the methods provided within
OAI-PMH) there are significant limits to what can be assumed about the quality and integrity of
data that has been shared widely.

The areas of data accuracy and logical consistency and coherence are perhaps the most
subjective of the quality criteria, and very difficult to determine (much less measure) even in the
best of circumstances. Some measurement of accuracy might be possible as an outcome of other
processes: for instance, a high level of invalid vocabulary terms, when a vocabulary is specified
and a schema available to the validator, might be interpreted as an accuracy problem. Simple
validation of XML determines whether the data is “well-formed” and this is also an indication of
accuracy in data. But where text strings are specified there are no real methods to measure the
accuracy of the keying and many typographical errors may be introduced as part of the normal
processes of creation and maintenance. Since logical consistency and coherence are being
considered as one of the characteristics of the review process DCMI offers to Application Profile
creators, one might want to assume that metadata conforming to a reviewed Application Profile
was therefore consistent and coherent, but this would be a stretch. Particularly if a data creator
practiced wholesale defaulting of missing data—called “promiscuous defaults” by Dushay and
Hillmann (2003)—such an assumption would be false.

Currency of data as a function of timeliness is measurable when administrative data is
available and the available policies of the provider give confidence that regular maintenance has
taken place, but the question of how timely is timely enough emerges fairly quickly. Application
Profiles do not generally define benchmarks for freshness of data, and in general the context of
the acquisition and use of the data would determine the answer to the freshness question. Bruce
and Hillmann also consider “lag” an aspect of timeliness, defined as the difference between the
provision of the content and the metadata, or vice versa. Lag would only be possible to determine

2007 Proc. Int’l Conf. on Dublin Core and Metadata Applications

56

in the second instance (when the metadata was available and the content was not), but it would be
almost impossible to determine the difference between a lag and other technical problems.

Bruce and Hillmann (2004) include a number of accessibility issues for metadata:
Metadata that cannot be read or understood by users has no value. The obstacles may be
physical or they may be intellectual. Barriers to physical access come in several forms.
Metadata may not be readily associated with the target objects, perhaps because it is
physically separated, comes from a different source, or is not properly keyed or linked to
the object being described. Or it may be unreadable for a wide variety of technical
reasons, including the use of obsolete, unusual or proprietary file formats that can only be
read with special equipment or software. In some cases, metadata is considered
“premium” information that is accessible only at extra cost to the user, or proprietary
information that is not released publicly at all, often because it represents a competitive
advantage that the creator or publisher wishes to retain. In other words, the barriers may
be economic or trade-related rather than technical or organizational.

Some common accessibility problems stem from content providers’ understandable desire to
track usage of their content. To do so, they either require individuals to register before viewing or
using content, or they prevent direct URL access to content by routing access through a single
portal. Other sites prevent search engine indexing of their content by using robots.txt barriers or
allow only limited indexing designed to route potential users through bespoke search pages.
These strategies, although they may seem to fulfill immediate goals for content providers,
ultimately prevent effective aggregation of resource metadata, and should be considered quality
problems. Some of these problems can be detected by machine, particularly if the same URL is
used for all resources, or there is an intention to provide combined full-text indexes in
combination with metadata, and effective access to indexing is prevented. Such issues are,
however, not related to Application Profiles in any obvious way.

3. Functions of Application Profiles
An important function of Application Profiles is the development and documentation of

community consensus. There were two communities that broke into Application Profiles early:
the Open Language Archives Community (OLAC), and the DC Libraries Working Group (DC
Libraries). The OLAC community created an application profile around their early adoption of
OAI-PMH, without the specific intention to create an AP. Their main goal was to build tools to
enable the smaller, less technically supported language archives to participate fully in community
data sharing activities, and they realized early that creating a community consensus around
elements and vocabularies was vital to their task (Bird & Simons, 2004). The DC Libraries
community was struggling with the disconnect between Dublin Core and USMARC, and
attempting to go beyond crosswalks, recognizing that much of their future revolved around digital
materials that would not be cataloged using USMARC. In both cases, the communities used a
community participation process to achieve agreement around data usage and expectations. In the
absence of real technical underpinnings around Application Profiles in the first few years of
discussion, the “movement” towards APs grew almost entirely based on the desire and need for
communities and projects to come to formal agreements about expectations.

An additional function grows from the needs of communities to establish practical guidelines
for the creation of metadata intended for sharing. These guidelines generally attempt to provide a
basis for decisions about usage of elements, data normalization, and use of controlled
vocabularies. Application profiles in this context are to a certain extent a precursor, or template,
for guidance documentation. In communities such as OLAC, the decisions in their AP were
specifically related to their need for specific tools required for data sharing amongst community
members, and indeed, the consensus building aspects of APs function well as a basis for tool
building.

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2007

57

4. Expectations for Machine Readable Application Profiles
Clearly, the effort of building Application Profiles is justified even if they function only as the

basis for human-readable documentation. But it is the promise of machine readability, built upon
this human-created foundation, which begins to address the real potential of Application Profiles
to improve and support metadata quality. The challenges for this transition from a primarily
human-readable focus to the fuller functionality of human- and machine-readable Application
Profiles will require the addition of supporting technology, including functioning registries that
can help manage AP expression in the form of multiple data validation engines and templates, as
well as manage the ongoing change cycle and distribution of technical information for a variety
of purposes.

Machine-readable expressions of the more generally available human-readable guidelines
expressed by an AP are complicated by the fact that APs must often define expectations for data that
may be generated in the form of both XML and RDF. XML and RDF require very different notions of
data validation. In fact, the notion that a single RDF statement, or a set of statements expressed in a
description set, is or is not valid in the syntactic sense of XML or general data validation does not
apply to RDF at all.

RDF “validation” does not extend beyond the fundamental “well-formed” semantic constraints
of RDF itself. Even when enhanced processing and inference rules are supplied in the form of
RDFS and OWL, RDF data cannot be “schema-validated” in the sense that most data providers and
data consumers think of when they think of valid data as being syntactically correct (W3C Semantic
Web Best Practices and Deployment Working Group, 2004).

Further complicating the issue for data consumers seeking RDF data validation is RDF’s
reliance on the assumption of an “Open World” of data in which data that is not present in a
description set can not actually be considered to be missing, but simply isn’t able to be
dereferenced or retrieved at the present time. “Missing” data may also not be considered missing
if its existence can be inferred based on conditions provided by an OWL or RDFS definition.
These assumptions are highly useful when dealing with data that is intended to live and be
accessible in the wide and deep ocean of the Open World of the Semantic Web, but can be less
useful when trying to support interoperability among more terrestrial data-driven applications.

4.1. Data Validation
RDF is a strategy for principled decentralization in a world where unanticipated data re-
use, [and] unanticipated data extensions, are valued (Brickley, 2005).

There are many potential approaches to at least partially solving some of the challenges posed by
RDF data validation. One promising approach involves an implementation of the rules-based
approach embodied by Schematron, described in “An XML structure validation language using
patterns in trees” (“Schematron,” 2007). Based on the earlier work “Schemarama” by Dan Brickley,
Leigh Dodds and Libby Miller, “Schemarama 2” (2005) uses a set of validation rules expressed as
SPARQL CONSTRUCT queries that are intended to indicate the presence (or absence) of data in a
description set. Failure of any of the queries indicates that the data is not “valid” in the sense that it
doesn’t return valid results from the query rules.

[S]ome constraints are difficult or impossible to model using regular grammars.
Commonly cited examples are co-occurrence constraints (if an element has attribute A, it
must also have attribute B) and context sensitive content models (if an element has a
parent X, then it must have an attribute Y) (Dobbs, 2001).

XML presents a different set of validation challenges. Like RDF, metadata encoded in XML
can be parsed by a machine to confirm that it is “well-formed,” and with an W3C XML schema
or DTD and a grammar-based validating parser the XML data can be syntactically validated—
checked for conformance to a pre-determined structure and the presence or absence of particular
encoding features. Rules-based validators, such as Schematron, offer somewhat greater potential

2007 Proc. Int’l Conf. on Dublin Core and Metadata Applications

58

to validate XML data based on predefined constraints, as in the Schemarama approach to RDF
cited above.

For metadata aggregators, the challenges are considerable, even when metadata is created and
aggregated in a community context in which all members of the community agree to play by an
agreed-upon set of rules and expectations as expressed in an Application Profile. Even when a
metadata provider agrees to produce AP-conforming metadata for subsequent harvesting, the
provider will often have local requirements and constraints, or even a local AP, dictating a
different description set than the one that will ultimately be shared with the community. Local
metadata formats may differ from the ultimate format of the shared metadata as well. Each
metadata provider therefore must ideally validate their data in the context of their own local
domain and then should also validate their data against the community AP before distributing it.

As statements are aggregated and shared within the community, prudence requires that each
consumer of the aggregated metadata validate the incoming data against the community AP
before it is crosswalked as necessary into local data structures. In the context of the rules and
conventions for metadata validation expressed in a community AP, this usually means applying
the limited grammar-based approach to validation of XML or the even more limited notion of
valid RDF.

What these validation rules and conventions cannot do is validate data content. With an
Application Profile, it should be possible to validate much of the content of a record as well.

5. Application Profiles
Application Profile structure has been developed extensively within the Dublin Core

community (Baker et al., 2005). The structure is based on the inheritance of some of the element
attributes from the metadata schema, the addition of basic usage information, and the association
of specific vocabularies to encode the values themselves or from which to choose values. The
Guidelines (currently under revision) divide the attributes into groupings according to their
function: Identifying, Definitional, Relational, and Constraints.

Thus, Date may be associated with the W3CDTF encoding rules, but Subject may require the
use of a specific controlled vocabulary in the context of a particular Application Profile.

The DC Properties are being updated to include Domains and Ranges for each of the DC
properties (Powell, 2007). As currently stated in the Dublin Core Abstract Model (DCAM) and in
other DC documentation, property domains and ranges are most useful in defining constraints in the
context of RDF-based metadata. In its simplest form the DCAM/RDF notion of Domain says that
when a statement is asserted that contains a predicate defined by DCMI as ‘date’
(http://purl.org/dc/terms/date), it can be inferred (but not required) that the subject of the statement
is a member of the class ‘resource’ (http://www.w3.org/2000/01/rdf-schema#Resource). The
DCAM/RDF notion of Range for that predicate says that the object of the statement may be inferred
(but not required) to be a member of the class ‘period’ (http://example.org/dc/terms/Period).

Application Profiles may modify or override these constraints as necessary. As discussed earlier,
validation of ‘correct’ application of Domain and Range presents some challenges for RDF data
validation, and is difficult at best to express these parameters in ways that can be validated by
typical grammar-based validating parsers.

Thus, the best potential for content validation occurs in the Relational Attributes and
Constraints. Relational attributes at present consist of:

a) Refines: The described term semantically refines the referenced term
b) Refined by: The described term is semantically refined by the referenced term
c) Encoding Scheme For: The described term, an Encoding Scheme, qualities the referenced

term

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2007

59

d) Has Encoding Scheme: The described term is qualified by the referenced Encoding
Scheme

e) Similar To: The described term has a meaning the same as, or similar to, that of the
referenced term.

The relationship between the property and an encoding scheme, expressed reciprocally in c) and
d), would allow validation of the presence of appropriate encoding schemes, and, particularly in the
case of controlled vocabularies available in a form usable by the validator, the vocabulary terms
themselves. This should be possible whether or not the terms exist in the instance metadata as text
strings or as URIs. When the encoding scheme is a syntax encoding scheme, the validator should
ideally be able to determine whether the information is expressed properly. For instance, a date
expressed as “January 13, 2005” should be detectable by a validator as not conforming with
W3CDTF, but the validator may not be able to detect that a date expressed as YYYYDDMM is
incorrect, unless the MM portion is more than 12 or the DD more than 31.

FIG 1. A human readable fragment from the DC Collections Application Profile, showing some of the
more granular expressions of intention used in newer APs.

The Constraints area of the AP provides perhaps the most critical (and most complex) area of

potential use in validation. In the current CEN documentation, constraints are expressed as four
parameters:

a) Obligation: whether the element is required to be always or sometimes present. Examples
of values include “mandatory,” “conditional,” and “optional.”

b) Condition: describes the condition or conditions when a value should be present
c) Datatype: indicates the type of data expected as the value of the element
d) Occurrence: indicates limits to repeatability of the element

2007 Proc. Int’l Conf. on Dublin Core and Metadata Applications

60

 More recent Application Profiles, based on the Abstract Model, are providing more detailed
expectations for encoding scheme values, specifically whether value strings or value URIs are
allowed or required.

6. Data Profiles: A Tool for Evaluation and Measurement of Metadata
Quality

Validation of data using Application Profiles needs to be viewed in the context of an overall
metadata management strategy. Particularly in an OAI-PMH-based aggregation environment,
where data is harvested from various sources and re-exposed for harvest by others, a strategy that
uses machine processing as much as possible is essential. Phipps, Hillmann and Paynter (2005)
envision an environment where data harvest and management is largely automated with a
scheduling function available to manage most of the work. Critical to this kind of effort,
particularly when automated transformation is part of the picture, is to be able to create and
maintain a “footprint” or “data profile” of what is actually harvested, so that changes in the data
initiated by the data provider can be recognized and re-evaluation of the transformation routines
initiated.

To a great extent, a data profile is the beginning step as well for determining whether the data
matches an Application Profile, particularly when the data provider asserts that the data was built
to conform to a specific Application Profile. In order for the data profile to work as a precursor
step, it must record the following:

1. Properties used for all records within a data set
2. Properties used only for some records within the data set, and the characteristics of that

subset as distinguished from the larger set
3. Datatypes and encoding schemes used in the context of each property used
4. Validation rates of URIs and text strings used as values when encoding schemes are

declared
5. Earliest and latest dates of creation and updating within the set.

7. Sample Use Case for Making Quality Assertions Based on Machine
Evaluation of Metadata

Metadata is harvested from open repository, with an OAI About container specifying that the
Collections Application Profile was used to create the data (DCMI Collection Description
Community, 2007). The data is examined using Spotfire (n.d.), a data visualization tool. It is
determined that:

1. All records include the following properties: dc:title, dc:type
2. Only 102 of the 245 records in the set include mandatory dcterms:abstract
3. All Type properties include the mandatory value “Collection” as a text string, not a URI

(which is mandatory)
4. Only 102 of the 245 records in the set include the optional/recommended dc:identifier

(these are the same subset as those that include dcterms:abstract)
5. Only 200 of the records contain dcterms:accessRights
6. Only 120 of the records contain either dc:creator or marcrel:OWN
7. The same 120 records also contain cld:isLocatedAt
8. A total of 15 records contain dc:publisher, not valid in this AP (no overlap with

cld:isLocatedAt)
9. Only 45 records contain cld:isAccessedVia, there is no overlap with cld:isLocatedAt.

A data profile is created for this set, recording the data as it is harvested. The evaluation of the
data confirms that this group of records contains a number of issues in terms of its conformance

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2007

61

with the stated Application Profile. It should be possible to proceed from the analysis to
determine a rating for each record based on:

a) Presence or absence of mandatory properties
b) Use of text strings as a value for dc:type instead of a URI
c) Absence of recommended values (dc:identifier)
d) Presence of properties not valid in this AP (dc:publisher)
e) Completeness of records in terms of supplying sufficient information for a user to

determine how to access the collection.
How such a rating is determined and expressed when the records are redistributed is an open

issue, as is the question of whether and how downstream users will use the ratings. Ratings may
potentially be used to present some records lower in rankings, or to flag them for specific services
(improvement or enhancement, either machine- or human-based).

8. Conclusion: Moving Towards Full Machine Validation, Evaluation and
Reporting

As Heery and Patel noted in 2000, implementation and experience are the teachers that best
move metadata management techniques forward. To a great extent, the most important initial
value of APs for implementers has been as a focus for community consensus and as a spur to
discussion of metadata quality. But a machine-assisted way forward requires better rates of
registration of the component parts of Application Profiles (metadata schemas and controlled
vocabularies) as well as registration and change management for APs themselves. How this
infrastructure will be built, sustained and extended is perhaps the most pressing question for
implementers, and the lack of good answers the biggest impediment to true progress.

References
Baker, Thomas, Makx Dekkers, Thomas Fischer, and Rachel Heery. (2005). Dublin Core application profile

guidelines. Retrieved April 21, 2007, from http://dublincore.org/usage/documents/profile-guidelines/.
Bird, Steven, and Gary Simons. (2004). Building an Open Language Archives Community on the DC foundation. In D.

I. Hillmann and E.L. Westbrooks (Eds.), Metadata in practice (pp. 203-222). Chicago: ALA Editions.
Brickley, Dan. (2005). CheckRDFSyntax and Schemarama revisited. Retrieved April 18, 2007, from

http://danbri.org/words/2005/07/30/114.
Bruce, Thomas R., and Diane I. Hillmann. (2004). The continuum of metadata quality: Defining, expressing,

exploiting. In D. I. Hillmann and E.L. Westbrooks (Eds.), Metadata in practice (pp. 238-256). Chicago: ALA
Editions.

CEN - European Committee for Standardization. (2003). ECWA14855 - Dublin Core application profile guidelines.
Retrieved April 21, 2007, from http://www.cenorm.be/cenorm/businessdomains/businessdomains/isss/cwa/
cwa14855.asp.

CEN - European Committee for Standardization. (2005). CWA 15249 - Guidance for naming, versioning, evolution and
maintenance of element declarations and application profiles. Retrieved April 21, 2007, from
http://www.cenorm.be/cenorm/businessdomains/businessdomains/isss/cwa/cwa15249.asp.

DCMI Collection Description Community. (2007). Dublin Core Collections Application Profile summary. Retrieved
April 21, 2007, from: http://dublincore.org/groups/collections/collection-ap-summary/2007-03-09/.

DCMI Libraries Community. (2004). Library Application Profile. Retrieved April 21, 2007 from
http://dublincore.org/documents/2004/09/10/library-application-profile.

DCMI. (2000). Dublin Core Qualifiers. Retrieved April 21, 2007 from http://dublincore.org/documents/2000/07/11/
dcmes-qualifiers/.

Dobbs, Lee. (2001). Schemarama. XML.Com. Retrieved April 20, 2007, from http://www.xml.com/lpt/a/727.
Dushay, Naomi, and Diane I. Hillmann. (2003). Analyzing metadata for effective use and re-use. Proceedings of the

International Conference on Dublin Core and Metadata Applications, Seattle. Retrieved April 21, 2007, from
http://www.siderean.com/dc2003/501_Paper24.pdf.

Heery, Rachel, and Manjula Patel. (2000). Application profiles: Mixing and matching metadata schemas. Ariadne, 25.
Retrieved April 21, 2007, from http://www.ariadne.ac.uk/issue25/app-profiles/.

2007 Proc. Int’l Conf. on Dublin Core and Metadata Applications

62

Open Archives Forum. (n.d.). OAI for beginners, the Open Archives Forum online tutorial. 2. History and development
of OAI-PMH. Retrieved April 21, 2007, from http://www.oaforum.org/tutorial/english/page2.htm.

Phipps, Jon, Diane I. Hillmann, and Gordon Paynter. (2005). Orchestrating metadata enhancement services:
Introducing Lenny. Proceedings of the International Conference on Dublin Core and Metadata Applications, Spain.
Retrieved April 21, 2005, from http://arxiv.org/abs/cs.DL/0501083.

Powell, Andy. (2007). Domains and ranges for DCMI Properties. Retrieved April 21, 2007, from
http://dublincore.org/documents/2007/02/05/domain-range/.

Schemarama 2: Testing Framework for RDF. (2005). Retrieved April 20, 2007, from
http://isegserv.itd.rl.ac.uk/schemarama/.

Schematron: An XML structure validation language using patterns in trees. (2007). Retrieved July 4, 2007 from
http://xml.coverpages.org/schematron.html.

Spotfire, Inc. (n.d.) DecisionSite product suite. Retrieved July 4, 2007, from
http://www.spotfire.com/products/decisionsite.cfm.

W3C Semantic Web Best Practices and Deployment Working Group. (2004). FAQ: Using RDFS or OWL as a schema
language for validating RDF. In SWAD-Europe Weblog. Retrieved April 20, 2007, from
http://esw.w3.org/mt/esw/archives/000048.html.

