
 Int’l Conf. on Dublin Core and Metadata Applications 2007

1

Parallel writing in East Asian languages and its representation in
metadata in light of the DCMI Abstract Model

Akira Miyazawa

NII, Japan
miyazawa@nii.ac.jp

Abstract

This paper discusses the parallel writing tradition in East Asian languages and its representation
in metadata. Parallel writing systems in these languages do not use the same scripts, but they all
share a common scheme and have a well-established tradition in bibliographic data. Their data
representation in the MARC bibliographic format is handled in a variety of ways. Even in the
metadata world, representation of parallel writing shows some inconsistencies. It is therefore
desirable to establish a new common way of representation. For this purpose, this paper discusses
the class of the represented values in terms of the DCMI Abstract Model (DCAM). In the case of
properties such as “Title”, it is possible to see the associated value as a “literal”, but for parallel
writing, it is more appropriate to see such a value as “a sequence of words”. Accordingly, parallel
writing can be represented as multiple value strings associated with a value of the class “sequence
of words”. Even so, one remaining problem is that the language tags used in the value string
language cannot also specify writing systems. Enumeration of the types of writing systems in
various languages and registration with RFC 4646 would be required in order to express this
information in DCAM value string languages.

Keywords: kanji; kana; hanja; hanzi; pinyin; metadata; MARC format; language tag; DCMI
abstract model.

1. Introduction

FIG. 1 shows part of a typical Japanese Web form for user registration. This is a name input
box, where one has to enter one’s name both in kanji (Chinese ideographic characters)
representation and kana (Japanese phonetic characters) representation.

This requirement is entailed by some characteristics of the Japanese language and its writing
system: (1) the modern Japanese writing system uses kanji together with kana and, occasionally,
Latin alphabets; (2) A word may be represented in kanji or kana or a mixture of the two; (3)
Mapping between kanji representation and kana representation is not unambiguous; i.e., a kanji
representation may have multiple kana representations, and a kana representation may have

multiple kanji representations. For example, my given name 彰 has kana representation あきら

(AKIRA), but the same kanji 彰 can also be しょう (SHŌ), while the kana representation あき
ら (AKIRA) can be 明, 昭, 晃, 顕, or one of more than twenty kanji representations. 4) Personal
names are represented in kanji in normal, everyday writing, while their collation sequence in a
directory (or a catalog) follows kana representations.

The kana representation is widely known as yomi (reading) in Japanese, as it gives phonetic
information of the word. Kana has two forms: one is called katakana, the other hirakana. For the
purposes of this paper, the difference between the two is insignificant.

The application system processing this registration form has to handle parallel writing.
Database representation of the record input from FIG. 1 is, typically, something like Table 1.

2007 Int’l Conf. on Dublin Core and Metadata Applications

2

FIG. 1. An example of a Japanese registration form.

ID NameInKana NameInKanji
123456 みやざわ あきら 宮澤 彰

TABLE 1. Database representation of FIG. 1.

Parallel writing is not unique to the Japanese language. Chinese also has parallel writing of
hanzi (Chinese ideographic characters) and pinyin (romanized representation of Chinese). Korean
has hanja (Chinese ideographic characters) along with the basic script hangul (Korean phonetic
characters). Parallel writing traditions of these three languages are different in their details, but
from the viewpoint of data representation, they all have the same issues.

This paper (1) reviews how parallel writing has been handled in traditional bibliographic
databases and in metadata, (2) studies the relation between DCMI Abstract Model (DCMI, 2007)
(hereafter DCAM) and parallel writing, (3) identifies issues, and (4) proposes solutions.

2. MARC Formats

The first MARC format specification to cater to parallel writing was JAPAN/MARC, which
was designed in 1979 (JAPAN/MARC 1981). Example 1 depicts how JAPAN/MARC handles
kanji, kana and kana romanization.

251 $A 土佐日記$F 紀貫之//著
551 $A トサ ニッキ$XTosa nikki$B251
751 $A キノ，ツラユキ$XKino,Turayuki$B 紀//貫之

EXAMPLE 1. JAPAN/MARC.

Tag 251 subfield $A is the title and subfield $F is the responsibility statement. It is written in
the usual writing system with kanji script. Tag 551 is the title access point field, in which subfield
$A is the kana representation of the yomi of the title (Tag 251 $A) and subfield $X is the
romanization of subfield $A. Similarly, Tag 751 is the author name access point field, in which
subfield $A is the kana representation of the yomi of the author (Tag 251 $F) and subfield $X is
the romanization of subfield $A. Tag 751 $B is the kanji representation of subfield $A.

 Int’l Conf. on Dublin Core and Metadata Applications 2007

3

(JAPAN/MARC uses some unusual punctuation marks (//) which should not be presented to end-
users. This punctuation can be ignored in this context.)

China MARC (see Example 2) has a structure like that of UNIMARC (UNIMARC, 1987), but
for pinyin representation, it has special subfields (CHINAMARC, 1996).

200 10 $a 西南民族教育文化溯源$Axi nan min zu jiao yu wen hua su

yuan$f 张诗亚著$Fzhang shi ya zhu

EXAMPLE 2. China MARC.

Tag 200 is the title and statement of responsibility field. Subfield $a is the title and subfield $f
is the statement of responsibility in hanzi representation. Subfield $A and subfield $F are the
special subfields. They are the pinyin representation of subfield $a and subfield $f, respectively.

KORMARC’s structure (KORMARC, 1993) is like USMARC (USMARC, 1980). It does not
have special structure like JAPAN/MARC or China MARC, but still has parallel writing (see
Example 3).

100 1 $a케네디, 죤 F.
245 10 $a 勇著의 발자줘 /$dJohn F. Kennedy 著;$e 陳奉天 譯
700 1 $aKennedy, John F.

EXAMPLE 3. KORMARC.

Tag 100 is the author heading in hangul form, of which the romanized form appears as an
added entry in tag 700. The title and statement of responsibility in tag 245 uses hanja, hangul and
Latin alphabet writing. There is no ‘hangul only’ form of the title. That is because hanja to
hangul conversion is unambiguous with the Korean standard character code (KSC5601), and the
system can automatically derive the hangul representation of tag 245 subfield $a (title) or
subfield $e (translator).

USMARC (Example 4) introduced tag 880 as “Alternate Graphic Representation”, with
subfield $6 linking the “base” field to the “alternate” fields.

100 1 $6880-01$aInose, Hiroshi,$d1927-
245 10 $6880-02$aJōhō no seiki o ikite /$cInose Hiroshi cho.
880 10 $6100-01/$1$a 猪瀬 博,$d1927-
880 10 $6245-02/$1$a 情報の世紀を生きて /$c 猪瀬 博 著.

EXAMPLE 4. USMARC.

UNIMARC (Example 5) repeats the same field for “alternative graphic representations”, with
subfield $6 linking data fields and subfield $7 showing the “Alphabet/Script of Field”.

200 1 $6a01$a한글 자형학.
200 1 $6a01$7ba$aHanʾgŭl chahyŏnghak.

EXAMPLE 5. UNIMARC.

These MARC examples demonstrate that, where bibliographic data is concerned, different
ways of parallel representation of names and titles are common in East Asian languages. In fact,

2007 Int’l Conf. on Dublin Core and Metadata Applications

4

this is so not only for bibliographic data, but is commonly found in most parts of data processing
in these languages.

The above examples show that there are two ways of representation. One is to coin a new data
field or subfield for parallel writing. The other is to use parallel fields with some kind of
attributes and/or linking information in subfields.

3. Metadata Examples

Example 6 is from a Japanese Web resource metadata record (NII, 2003).

<title>世界国尽</title>
<title.transcription>セカイ クニヅクシ</title.transcription>
<creator>福沢諭吉</creator>
<creator.transcription>フクザワ ユキチ</creator.transcription>

EXAMPLE 6. Japanese metadata.

This is a record from an old-fashioned Dublin Core based metadata, which uses a qualifier
“transcription” to record kana representation of the title and the creator. This type of qualifier
usage is controversial today. Conceptually, however, it is a simple and natural extension of the
method used in Example 1 and is often observed in Japanese metadata. When the transcription
type is limited and the linkage between <title> and <title.transcription> is easily found by some
means, this method provides a simple solution. However, when there are many creators, and each
creator has multiple transcriptions, it may be difficult to identify the linkage.

A similar type of representation is found in a Korean metadata standard. Example 7 is from
“Metadata for the Human Resources in Science and Technology” (STISC, 2005). It has separate
attributes for a name represented in hangul, romanization and hanja.

Person Name Korean 김삼식
Person Family Name English Kim
Person First Name English Sam Sik
Person Name Chinese 金三植

EXAMPLE 7. Korean metadata.

An example of another type of representation is Metadata Object Description Schema (MODS)
(LC, 2006). Example 6 may be represented in MODS as shown in Example 8.

<titleInfo>
 <title>世界国尽</title>
 <title script="Kana”>セカイ クニヅクシ</title>
</titleInfo>
<name type="personal">
 <namePart>福沢諭吉</namePart>
 <namePart script=”Kana”>フクザワ ユキチ</namePart>
 <role><roleTerm type="code">cre</roleTerm></role>
</name>

EXAMPLE 8. MODS.

 Int’l Conf. on Dublin Core and Metadata Applications 2007

5

This type of parallel representation is an extension of the UNIMARC (Example 5) approach.
MODS has general attributes “lang”, “xml:lang”, “script” and “transliteration” that can be used
with parallel writing. <title> and <namePart> elements in Example 8 use the “script” attribute to
identify the content.

4. Parallel Writing and DCAM

Examples in the previous sections show the widespread use of parallel writing in East Asian
languages. At the same time, we can see inconsistencies in how data are represented. Such a
situation is not desirable from the standpoint of metadata interoperability. In this section, we
discuss how parallel writing should be represented from the viewpoint of DCAM.

According to DCAM, the value associated with a property is a resource. For any given
property, such as the DCMI metadata term “Title” (dc:title), one can ask with what class of value
the property is associated. In other words, what is the range of this property?

It is very natural to think of that range as a literal, or character string. In this case, the three

representations of titles in Example 1, “土佐日記” (Tag 251 $A), “トサ ニッキ” (Tag 551 $A)
and “Tosa nikki” (Tag 551 $X) are all different resources. In this sense, “HAMLET” is different
from “Hamlet”. Some people may object that capitalization is not a significant difference, but it
depends on how characters are defined. If character “A” is different from character “a”, then
“Hamlet” is different from “HAMLET” as a literal.

The second possible class is a sequence of words. A word can be represented by different
scripts, or by different writing systems. In this class, “HAMLET” and “Hamlet” are different

representations of the same word. “土佐日記” (Tag 251 $A), “トサ ニッキ” (Tag 551 $A) and
“Tosa nikki” (Tag 551 $X) of Example 1 are different representations of the same sequence of
words.

If the value associated with the property dc:title is a literal, titles in Example 1 (Japanese kanji,
kana and romanization), will be represented as in Example 9, using the DC-Text syntax (Johnston,
2006).

Statement (
 PropertyURI (dc:title)
 ValueString (“土佐日記”)
)
Statement (
 PropertyURI (dc:title)
 ValueString (“トサ ニッキ”)
)
Statement (
 PropertyURI (dc:title)
 ValueString (“Tosa nikki”)
)

EXAMPLE 9. Title as literal.

This actually says that the resource has three titles (like parallel titles). One cannot tell how
these three value strings are related.

If the value associated with the property dc:title is a sequence of words, then Example 9 would
be expressed as in Example 10, using the DC-Text syntax.

2007 Int’l Conf. on Dublin Core and Metadata Applications

6

Statement (
 PropertyURI (dc:title)
 ValueString (“土佐日記”)
 ValueString (“トサ ニッキ”)
 ValueString (“Tosa nikki”)
)

EXAMPLE 10. Title as sequence of words.

The question “Is the range of dc:title a character string or a sequence of words?” does not force
one answer or the other. The dc:title of a manifestation in a FRBR sense may be a character string,
while a dc:title of a work in FRBR sense is more likely a sequence of words.

In the case of “Creator”, the “literal or sequence of words” question is not directly the range of
this property. The class of the value of Creator is “Agent”. If we use the related description with
DescriptionID mechanism of DC-Text, it will be something like Example 11.

DescriptionSet (
 Description (
 Statement (
 PropertyURI (dc:creator)
 DescriptionRef (someone)
)
)
 Description (
 DescriptionId (someone)
 Statement (
 PropertyURI (dc:title)
 ValueString (“紀貫之”)
 ValueString (“キノ，ツラユキ”)
 ValueString (“Kino, Turayuki”)
)
)
)

EXAMPLE 11. Creator as sequence of words in separate description.

Use of dc:title for the personal name may look strange. But when the described resource is a
person, value of the property dc:title is personal name, by the definition “a name given to the
resource”.

This type of multiple related descriptions in DCAM was introduced rather recently and is still
not widely used. Name as value string is more commonly used. Example 12 shows parallel
writing of personal names in multiple value strings.

 Int’l Conf. on Dublin Core and Metadata Applications 2007

7

DescriptionSet (
 Description (
 Statement (
 PropertyURI (dc:creator)
 ValueString (“紀貫之”)
 ValueString (“キノ，ツラユキ”)
 ValueString (“Kino, Turayuki”)
)
)
)

EXAMPLE 12. Creator name representations in multiple value strings.

With this representation, the distinction between “literal” as opposed to “sequence of words”
does not apply, so the relation of these three value strings is unclear.

5. Language Tags and Writing Systems

In the examples of the previous section, I have omitted value string language. DCAM says that
value string language is ISO language tag, which should be a language tag as defined in BPC 47
or RFC 4646, which renders RFC 3066 obsolete (RFC 4646, RFC 3066). Language tags were
omitted from the above examples because there are no appropriate language tags to identify the
three representations above. Language tags in the form of “language code-country” code are not
enough to distinguish Japanese kana, kanji and Romanization, as they are all “ja-JP” (Japanese-
Japan).

RFC 4646 has introduced script sub-tags. With it, one may think “ja-Hani” (Japanese-kanji
script), “ja-Kana” (Japanese-katakana script) and “ja-Latn” (Japanese-Latin script) are suitable.
However, it is not just a matter of the script. It is a kind of writing system difference. Example 13
is a company name.

Statement (
 PropertyURI (dc:title)
 ValueString (“IBM”)
 ValueString (“アイ・ビー・エム”)
 ValueString (“Ai bî emu”)
)

EXAMPLE 13. A name with writing system differences.

The first one is the usual writing system. Proper nouns in acronym form are written in the
Latin script. It cannot be identified by “ja-Hani”. The second one is the yomi in kana-only writing
system, and the third one is kunrei-siki romanization of the second one. With the modified
Hepburn system of romanization, which is used by the Library of Congress, it is “Ai bī emu”.

In Japanese and in many other written languages, there are more than one writing system or
writing system variations. For example, there may be old and new orthography, and there may be
several romanization schemes. With differences in writing systems or writing system variations,
one word in a language can be represented in many ways.

Sub-tags of RFC 4646 “can also be used to indicate additional language attributes of content ...
indicating specific information about the dialect, writing system, or orthography” (RFC 4646, 1.).

2007 Int’l Conf. on Dublin Core and Metadata Applications

8

However, there is no standard scheme for indicating a writing system. Script code is not enough
to identify a writing system. To identify a writing system with RFC 4646, one would need to
register sub-tags for that purpose.

6. Required Action

For the purpose of interoperability, it is desirable to establish a standard way to represent this
type of parallel writing systems in DC metadata. Two courses of action should be taken to
achieve this.

One is to investigate the parallel writing tradition - how parallel writing is represented in
metadata. As mentioned in the previous sections, East Asian Languages use them. However, it is
not clear how many other languages have parallel writing traditions of relevance to metadata.

The other course of action is to enumerate the writing system variations used for parallel
writing, and to register them with RFC 4646, so that they can be used within the DCAM value
string language.

7. Further Consideration on Parallel Writing Tradition

In this paper, I have taken the Japanese parallel writing tradition as representative of parallel
writing systems in general. It must be true for most of the cases. But there are cases difficult to
explain as parallel representation with different writing system. An example is a famous Japanese
drama title of the 19th century, using the rubi layout.

青
砥
稿

あ
お
と
ぞ
う
し

花
は
な
の

紅
彩

に
し
き

画 え

EXAMPLE 14. Rubi in Japanese

Rubi is usually used to show the yomi (reading) of the kanji script. Typically, it is used in
educational books for children. But in this case, the rubi is not the usual yomi, but rather like a
rephrasing of the title in kanji script. The layout suggests yomi, but in fact it is used to achieve
some literary effect. This type of rubi usage is still found in cartoons, advertisements, etc. This is
not the representation of words in different writing systems. It is more like parallel titles written
in two languages. In a description, it should be recorded as separate statements. This means that
when recording metadata, consideration should be given not only to the layout but also to the
relation of the words written there.

8. Conclusion

East Asian languages have parallel writing systems. But they have different ways of
representing these systems in metadata. This is not desirable for interoperability of metadata.
From the viewpoint of DCAM, these are most naturally considered as different representations of
a sequence of words. In this interpretation, the most suitable way is to record them as multiple
value strings in a statement. But language tags for the value string are currently not enough to
identify these writing system differences. To establish interoperability of such metadata, further
investigation of parallel writing traditions and registration of these writing systems are needed.

To establish wider interoperability of metadata, better applicability for various languages is
required. It is hoped that this paper helps to achieve wider applicability of Dublin Core metadata.

Rubi is a small font kana representation placed to the right of the
kanji characters in Example 14. It is not necessarily vertical writing,
but can also be horizontal writing, in which case the rubi is placed
above the main kanji characters. This layout is still so well used in
Japanese publications that Microsoft Word supports it.

 Int’l Conf. on Dublin Core and Metadata Applications 2007

9

Acknowledgements

The author wishes to thank Thomas Baker for his invaluable suggestions, and Sam Oh and Inseok
Song for giving indispensable information.

References

CHINAMARC. (1996). 中国机读目录格式. 中华人民共和国文化部. WH/T0503-96.

DCMI. (2007). DCMI Abstract Model. Retrieved June 7, 2007, from http://dublincore.org/documents/abstract-model/.

JAPAN/MARC. (1981). JAPAN/MARC マニュアル. 東京. 国立 国会 図書館.

Johnston, Pete. (2006, May). DC-Text: A text syntax for Dublin Core Metadata (Working draft). Retrieved July 7, 2007,
from http://dublincore.org/architecturewiki/DCText.

KORMARC. (1993). 한국 문헌자동화목록형식. 서울. 국립중앙도서관. KSC 5867.

LC (2006). Metadata Object Description Schema, version 3.3. Retrieved March 30, 2007 from
http://www.loc.gov/standards/mods/.

NII (2003). A metadata. Retrieved September 14, 2005, from http://ju.nii.ac.jp/oai.

RFC 3066. (2001). Tags for the identification of language. Retrieved March 12, 2007, from
http://www.ietf.org/rfc/rfc3066.txt.

RFC 4646. (2006). Tags for identifying languages. Retrieved March 12, 2007, from http://www.ietf.org/rfc/rfc4646.txt.

STISC. (2005). Standard: Metadata for the Human Resources in Science and Technology: Final draft.

과학기술정보표준화위원회.

UNIMARC. (1987). UNIMARC manual. London: IFLA Universal Bibliographic Control and International MARC
Programme, British Library Bibliographic Services.

USMARC. (1980). MARC formats for bibliographic data. Washington, D.C.: Automated Systems Office, Library of
Congress.

