
Abstract:
We present a national ontology library development

tool ONKI under development in Finland. ONKI’s
main goal is to support collaborative development and
re-use of interdependent ontologies. It features change
management and versioning of ontologies and
concepts as well as a Browser component which
provides the ontology search and utilization services
as Web Services.

Keywords:
Semantic web, ontology library, collaboration.

1. Introduction

Growing interest and need for both human and
machine understandable information in the www is
driving the research and development in Semantic web
ontologies. Ontologies contain information about
concepts and their relations. For example, a banking
ontology would contain information of the concepts of
different types of accounts, transactions, currencies,
and transactions having debit and credit accounts and
amounts of currency as their properties.

Unfortunately, current support systems for ontology
development are limited especially in the areas of
interoperability and re-use. Reminiscent of the older,
non-distributed artificial intelligence and knowledge
representation, these tools generally lack the core
nature of web-related development – interoperability.
Thus, Semantic web faces the risk of becoming an
archipelago of separated islands instead of a unified
web of re-using and expanding on existing models.
Ontology library systems are proposed as a solution
for the lack and difficulty of re-use [1].

The ONKI system described in this paper is to be
used as a support tool in the development of a set of
national Finnish ontologies [2].

2.Ontology Development Process

As advised in [3], ontology development is likely to
follow an iterative model – an initial publication
followed by a long maintenance time. During
maintenance, varying numbers of changes are
introduced and new versions published. The process
resembles that of software development with modeling
problems and releases. Thus, approaches used in
distributed software development can be applied.

Various applications, such as Protégé [3], are
available for ontology modeling. Such tools usually
provide a visual front-end to the actual model, but
work on an inflexible expectation of a single file or
stand-alone database ontology storage. The
hypertextual nature of Semantic web ontologies
requires us to include assisting mechanisms to address
issues beyond such file and file set level structures.
For example, the use of revision control systems such
as CVS for Semantic Web ontologies [4] must be
considered carefully since traditional revision control
systems are usually designed with linear text files in
mind rather than serialized graphs such as RDF/XML.

A Tool for Collaborative Ontology Development
for the Semantic Web

Arttu Valo, Eero Hyvönen, Ville Komulainen
Helsinki University of Technology and University of Helsinki

P.O. Box 5500, FIN-02015 TKK, FINLAND
FirstName.LastName@helsinki.fi

http://www.cs.helsinki.fi/group/seco/ontologies/

DC-2005: Proc. Int. Conf. on Dublin Core and Metadata Applications 2005 ~209

Figure 1: ONKI development and publishing
process

The ONKI architecture and publishing process is
depicted in Figure 1. Three core components of the
system are the development repository (ONKI
GORepository) for access to versions of ontologies
and concepts, the public ontology library containing
the sets of versions of published interrelated
ontologies and their change sets (ONKI Library), and
the browsing service (ONKI Browser) for using the
ontologies.

For brevity, we will call all RDF resources within
ONKI repositories concepts, whether they are classes,
instances, or properties.

ONKI separates the development process into two
major parts: the development loop (cf. the arrows
between Domain Expert and ONKI GORepository in
Figure 1) and the publishing push (cf. the bottom
arrow from Domain Expert to ONKI GORepository
and the arrow from there to ONKI Library in Figure
1). The development loop is based on exporting an
ontology with versioning metadata and proxies in
place to protect the distributed development.

Notification and changes are occasionally polled
from the development repository, especially for seeing
whether there have been affecting changes in other
ontologies. Pull is used to download the affecting
changes made in related ontologies because it has
been identified as better than other mechanisms for
keeping distributed ontology copies and development
synchronized [5, p. 152].

All changes, e.g., the introduction of a new concept
in a subsumption hierarchy, are documented as
instances of a RDF change ontology and are stored as
metadata of the ontology development version when
editing an ontology. Concepts from related ontologies
can be imported by a proxy-mechanism that creates a
copy of the borrowed concepts and keeps track of their
origin.

Having a securely contained development copy of
imported concepts allows the ontology developer to
focus on her modeling work without constant worries
of changes in dependencies with other ontologies in
the library. Furthermore, the system also maintains
dependency information in the concept’s home
ontology so that the consequences of making changes
are apparent to that ontology’s editor.

Once an ontology editor decides that the current
development version is mature enough for publishing,
the modified ontology is uploaded to the development
repository. The development repository keeps track on
individual concepts and ontologies that contain them.
Both concepts and ontologies are versioned.

When an official version of the ontology is
published to the development repository, the
publishing push is automatically activated. In
publishing push, the development metadata, e.g.,
proxies and changes, is separated from the clean

ontology. This results in two published packages: 1) A
cleaned-up, readily-usable ontology version – in our
case a RDF Schema file. 2) A RDF file containing the
change set between the previous version and this just
published latest version. This change metadata can be
used when the developers of other ontologies want to
upgrade their own depending ontologies to meet the
changes or by other users who cannot or do not want
to download the new version as a whole.

3. Development Repository Functionality

The development repository maintains metadata of
versions for concepts and ontologies, and tells to what
ontologies each concept’s versions belong to; in
addition, it keeps track of change requests, i.e.,
changes not made by the owner of the ontology. The
ontology development metadata is based on two
mechanisms: changes and proxies.

1.1.Describing Changes

There are two kinds of change descriptions in
ONKI. First, metadata of concept changes in the each
ontology is maintained. Second, the system records
change requests imposed by changes made in other
ontologies or fed in through a feedback channel. For
example, if a concept is moved from one ontology to
another, then the new origin information should be
updated in all ontologies using the concept.

Knowing the change history of ontologies is
important in synchronizing ontology development of
related ontologies and in keeping the versions
interoperable. In PROMPTdiff [6], ontology changes
are identified automatically by comparing two
versions and then deducing the changes. Since this
approach cannot necessarily identify and describe all
changes accurately, we decided that the editor should
record the changes explicitly during the development
process in terms of change metadata.

Change requests differ from changes only in that
they have been imposed by changes made in other
related ontologies. Pending change requests are visible
in the development repository through the ONKI
Browser. The editor can then decide whether to turn
the request into an official change.

The development repository stores version
sequences of both ontologies and concepts. Each
concept version is attached to one or more ontology
versions. In addition to the concept version references,
an ontology version also stores change ontology
instances providing a change set from previous
version. Our change ontology differs from that
presented in [6] in that ours builds on automatically
recorded primitive changes with strict ontological
definitions while Klein’s also has semantically more

210 DC-2005, September 12-15 - Madrid, Spain

vague composite change blocks resulting from the
mechanical comparison.

ONKI system can also accept ontologies from
editors who do not produce full track of change
instances. This does, however, prevent publishing
meaningful change sets and will cause a breach in the
changes chain for both ontology and its concepts.

1.2.Using Proxies

Proxies are a crucial mechanism for separating
individual ontologies for distributed development. A
proxy is a local representation of a remote entity – in
our case an ontology concept. When an ontology is
exported for development from the developement
repository, references with other ontologies within the
development repository are replaced by proxies.

Figure 2 exhibits a very simple example of a
dependent pair of ontologies. A change in the Flora
(fl) ontology will directly affect the depending Process
Industry (pi) ontology. For example, if the Wood class
is divided into different types of trees, only part of
them are likely to be good raw materials for making
pulp. Furthermore, Wood as a vague concept might
not really belong to the Flora ontology – it could
better belong into some Nature Materials ontology
while the actual species of trees would be listed in the
Flora ontology. Any of these changes would affect the
Pulp class in the Process Industry Ontology. A detailed
list of ontological change effects can be found in [7].

Figure 3 presents the situation in development
versions after the introduction of proxies. Both
ontologies have a protective one-arch-wide cloud of
proxies which hide the direct references and instead
point to the versions at the creation time of the proxy.
When proxies are created to both ontologies
automatically, the dependency is visible for editors of
both ontologies. The editor software’s knowledge of
the proxy ontology limits the visualization of the
dependencies, but the proxy-system should also work
with generic RDF-editors.

When we create a proxy, we copy the concept with
a URI in the proxy namespace and give it at least one
property: the proxyFor RDF literal, which has the
original URI as string value. The reason for it not
being a RDF resource is to prevent current editors
from traversing through it during development. The
concept’s home ontology (Flora ontology in Figure 3)
will have a similar proxy of the other concept to keep
its editor aware of having depending references.

A proxy can have any range of the properties of the
entity it represents. If and when the properties of a
concept are changed in its own home ontology, polling
can be used to update to the latest version. Thus, the
developer of an ontology will have an isolated
development version and work with it independently
of changes elsewhere.

It is the duty of the development repository import
and export functions to retain unique references to the
proxies and versions during development. The
development version’s interdependencies are not
limited to existing proxies created by the development
repository’s export functions. New concepts from
other ontologies can be “taken into use” into a
development version through the services of ONKI
Browser. In practice, the services will create proxies.

Upon publishing, temporary metadata such as the
proxies are removed and URI references are reverted
to point to the actual entities.

4. ONKI Browser and Interfaces

ONKI Browser is used for illustrating, finding, and
importing concepts from the ONKI system ontologies
(cf. the arrow Using services in figure 1. It consists of
three components: 1) Connector to ontology repository
that has utilities for knowledge-base information
retrieval processes. 2) Visualizer for the semantic data,
collecting the data from Connector according to
parameters given. 3) Web Service interface for
intelligent agents and applications. This interface is as
a wrapper to the Connector providing access to
ontological information.

An ontology library such as ONKI can contain lots
of separate ontologies. A domain expert editing one
ontology with an ontology editor, typically can not see

DC-2005: Proc. Int. Conf. on Dublin Core and Metadata Applications 2005 211

Figure 2: Simple interdependent ontologies

Figure 3: Simple ontologies with proxies
providing isolation

the other related ontologies stored in the library. Thus,
it is essential to have a tool for gaining a clear
perception of the ontology library as a whole.
Although visualizing complex semantic data in HTML
is challenging, HTML is a good platform since there is
no need for any additional software installation or
plugins for the end user.

Interface also offers search engines an option of
querying ONKI and looking for synonyms or closelely
related concepts matching the specified search-criteria
and later guide Search engines user towards the
answers he/she was really looking for.

Machine understandable interfaces are required
for sharing and using knowledge stored in ontologies.
External applications can use ONKI by the Simple
Object Access Protocol (SOAP) over HTTP. This
mechanism gives, for example, the possibility to
annotate external application data with the concepts
in ONKI by implementing SOAP-calls to the server.
ONKI Browser can be used for finding and selecting
the annotation concepts. The benefits of such a
centralized ontology service are clear: Firstly,
external applications can reuse the ONKI Browser
functionality. Secondly, concept labels and especially
the underlying complex URIs can be imported easily
into applications. Thirdly, the service on the web
always contains up-to-date versions of the
ontologies.

5. Discussion

The need for ontologies is clearly visible, but the
tools for the development, management, and
publishing ontologies are just being developed. ONKI
system tries to alleviate the need by providing a non-
intrusive, interoperable framework for distributed
collaborative development, straightforward
publishing, and web service based usage of ontologies.

ONKI is currently being developed as part of the

FinnONTO project, scheduled for 2003-2007. First
version of the Browser is in project group’s internal
use.

6. Acknowledgements

This work is funded by National Technology
Agency Tekes and a consortium of 14 public and
private organizations.

References

1. Y. Ding, D. Fensel. Ontology library systems: the
key to successful ontology reuse. In The first
Semantic Web symposium (SWWS1), Stanford,
USA, July 29-August 1 2001.

2. E. Hyvönen, A. Valo, V. Komulainen, K. Seppälä,
T. Kauppinen, T. Ruotsalo, M. Salminen, A.
Ylisalmi, Finnish National Ontologies for the
Semantic Web – Towards a Content and Service
Infrastructure. Proceedings of Int. Conf. on
Dublin Core and Metadata Application (DC-
2005), short papers, Madrid, 2005.

3. N. Noy, D. McGuinness, Ontology Development
101: A Guide to Creating Your First Ontology,
Stanford University.

4. T. Korpilahti, E. Hyvönen. An Architecture for
Collaborative Ontology Library Development.
Paper, University of Helsinki, 2004.

5. L. Stojanovic. Methods and Tools for Ontology
Evolution. PhD Thesis, Universität Karlsruhe,
2004.

6. M. Klein. Change Management for Distributed
Ontologies. PhD Thesis, SIKS, The Dutch
Graduate School for Information and Knowledge
Systems, 2004.

7. N. Noy, M. Klein. Ontology evolution: Not the
same as schema evolution. Knowledge and
Information Systems, 5, 2003.

212 DC-2005, September 12-15 - Madrid, Spain

	Libro Actas DC 1
	Libro Actas DC 2
	Libro Actas DC 3
	Libro Actas DC 4

