
Towards A Language for Metadata Schemas for
Interoperability

Vilas Wuwongse1, 2 and Masatoshi Yoshikawa2

1Asian Institute of Technology, Pathumthani, Thailand
2Nagoya University, Nagoya, Japan

Email: vw@cs.ait.ac.th, yosikawa@itc.nagoya-u.ac.jp

Abstract: In order for metadata
to be interoperable, its schema must be
able to precisely describe its terms,
context as well as semantic and syntactic
constraints. With this precise
information, other applications or
machines can analyze, understand and
utilize metadata. A metadata schema
therefore demands an expressive
language. Languages requirements are
presented and a language to meet them is
proposed.

Keywords: application profile;
metada ta ; me tada ta schema;
OWL/XDD; schema language

1 Introduction

Metadata is often defined as data about
data, or, more precisely, as the
information required to make data useful
and widely usable. It has been
recognized to be an important
technology for the storage, management,
discovery, access and utilization of data
resources on the Internet. Various types
of metadata exist such as metadata for
cataloguing, usage terms and conditions,
administration, content ratings and
provenance. Metadata is typically
expressed as a set of pairs of property
type and value. A property type
characterizes a feature of data that
should be described as part of its
metadata and is normally called a
metadata term or metadata element. The
meaning of a term must be precisely
provided for it to be shareable and

interoperable. A term can have qualifiers
to enhance its given basic meaning. A
property value can be a simple, atomic
literal, or it can be a complex structure
representing a group of related values or
another data resource. There can be a
constraint on the range of a property
value. All this underlying information
about metadata, i.e., its terms and values
as well as their semantics, syntaxes and
constraints are described in its schema.
A metadata schema is required for
metadata to be analyzed and understood
by other applications.

A set of metadata terms may
sometimes not be able to meet the
requirements of a resource to describe all
desirable and necessary aspects of its
data, hence a combination of parts of
different metadata sets may be required.
A schema detailing such a combination
is called an application profile (1). An
application profile is thus a metadata
schema which specifies required terms
drawn from parts of one or more
metadata sets, combined and optimized
or constrained for a particular
application. An application profile
cannot define its own terms (1); it can
only refine or constrain the existing ones
from some metadata sets to suit the
needs of its application. As a result, an
application profile could become very
complicated.

A metadata instance which
conforms to a metadata set schema or an
application profile can be expressed in
many syntactical forms, e.g., HTML,
XML or tables, depending on its real

implementations. The syntax of a
metadata instance can be flexibly
converted from one form to another
while its meaning has to refer to its
registered metadata set schema or
application profile.

Sugimoto, et al. (2), in their
proposal of a layered model of metadata
schemas, state that a metadata schema
defined for an application consists of
three layers: Semantic Definition,
Structural Constraints Definition and
Implementation Dependent Syntax
Definition Layers. A metadata schema is
indeed required to describe information
of a wide range of varieties and at
different levels, hence it demands an
expressive language.

Section 2 presents a detailed
discussion of requirements for metadata
schema languages, Section 3 proposes a
language aiming to meet these
requirements and Section 4 draws
conclusions.

2 Requirements for Metadata
Schema Languages

A language employed to specify a
schema for shareable and interoperable
metadata should possess the following
properties or capabilities:

Being formal, precise and machine-
processable

A metadata schema is the
grammar for the verification of the well-
formedness and validity of its metadata
instances when they are created.
Moreover, it is used by other application
profiles for their schema definitions, and
by other applications or machines for
their analysis and understanding of
metadata instances. Hence, it must be
formally and precisely described so that,
given a metadata schema, its syntactic

and, if possible, semantic checkers,
processors or analyzers can be readily
developed.

Definition of the meaning of various
types and domain-specific terms

When a large number of domains
adopt the employment of metadata,
various domain-specific metadata terms
will be defined. Each domain has its own
terms for property and value types as
well as qualifiers used to enhance the
meanings of term. There is the
possibility that two or more different
domains may use the same term with
different meanings, i.e., an existence of
homonym problems. These problems
might be easily solved syntactically by
prefixing terms with their domain name-
spaces, but, to be able to distinguish
their real differences, one has to refer to
their detailed meaning definitions. In
addition to defining terms of different
types and domains, there is also a need
to define terms at different levels:
Metadata term set and application profile
levels. At the application profile level, a
term is defined by refining a term
belonging to one of the existing
metadata sets. A good schema language
must provide necessary constructs for
these complex term definitions and
refinements.

Expression of term relationships
There can be relationships

between terms in a metadata term set,
e.g., the inverse relationships between
the Dublin Core (DC) qualifiers
IsRequiredBy and Requires and between
the qualifiers I s F o r m a t O f and
HasFormat. In DC, if it is always the
case that the content of element
Description contains all the keywords in
element S u b j e c t , then there is a
subsumption relationship between the

two elements, i.e., Description subsumes
Subject. Besides these relationships in-
between the same type of terms, there
can also exist relationships across
different term types, e.g., between a
property type and a value type. For
example, in a collection of Buddhist
documents, property type Date may be
specified to have its values belonging to
Buddhist calendar year type. Term
relationships become more diversified
and complicated when it comes to
application profiles. In an application
profile, terms can be drawn from a
number of different metadata term sets.
Some of these terms are equivalent,
some are more general than others, and
some may be generated by composition,
union or intersection of some others.

Expression of constraints, conditions
and rules

As a technique for refinement,
application profiles may impose certain
constraints on existing metadata terms.
For example, the range of a value type
may be narrowed down. In addition, an
application profile may introduce
conditions on how its adopted and
refined terms can be used in metadata
instances: Whether they are mandatory
or optional, what their minimal and
maximal occurrences are and whether
they are repeatable. Some general rules
or guidelines may need to be described
so that only proper metadata instances
are created. As an example, consider the
Dump-Down Principle (2) which
provides a guideline for the application
of qualifiers. It states that the value of a
term with qualifiers must be consistent
with that of the term when the qualifiers
are removed. This principle is
considered to be important for
interoperability and should be satisfied
by any term created. A language

describing this principle should enable
easy implementation of its automatic
verifier.

S p e c i f i c a t i o n o f s y n t a c t i c
transformation

A sharable metadata instance of a
data resource may simultaneously appear
in many syntactic forms depending on
user or implementer requirements.
Consequently, the metadata schema of
an application profile must be able to
specify how its metadata instances may
be transformed from their internal syntax
into a required syntactic format. A good
metadata schema language must also be
a flexible syntactic transformation
specification language.

The next section presents a
language which attempts to satisfy all
the above properties or capabilities.

3 OWL/XDD

OWL/XDD is a language which
combines OWL (Web Ontology
Language) (3) and XDD (XML
Declarative Description) (4). OWL, a
W3C’s recommendation, is a language
for describing ontologies as well as their
schemas. OWL can formally and
precisely specify concepts or terms and
their various relationships. However, it
cannot express complex constraints and
rules. On the other hand, XDD is a
general XML-based information
representation language with well-
defined semantics and the capability of
expressing constraints and rules.
OWL/XDD incorporates OWL into
XDD by basing XDD’s basic constructs,
i.e., XML expressions or XML elements
with variables, on OWL elements and
their semantics. In other words,
OWL/XDD is an extension of OWL in
which its elements are allowed to have

variables and their relationships
expressed as constraints and rules.
Ordinary OWL elements and those with
variables are together called OWL
expressions. An ordinary OWL element
without any variable is specifically
called a ground OWL expression. Every
component of an OWL expression can
contain variables, e.g., its expression or a
sequence of sub-expressions (E-
variables), tag names or attribute names
(N-variables), strings or literal contents
(S-variables), pairs of attributes and
values (P-variables) and some partial
structures (I-variables). Every variable is
prefixed by ‘$T:’, where T denotes its
type; for example, $S:value and
$E:expression are S- and E-variables,
which can be specialized into a string
and a sequence of OWL expressions,
respectively. As a result, OWL/XDD is
an XML-based language which can
formally and precisely specify terms,
their semantics and syntaxes, term
relationships, constraints and rules. The
rules can include rules for syntax
transformation, hence OWL/XDD is a
language which can be used to describe
metadata schemas and has a potential to
meet the requirements discussed in the
preceding section._ A complete
specification of a metadata schema in
OWL/XDD is called an OWL/XDD
description.

Formally, an O W L / X D D
description is a set of OWL clauses, each
of which has the form:

H ← B1, B2, ..., Bn

where n ≥ 0, H is an OWL expression,
and B i is an OWL expression, or a
constraint . The order of the B i is
immaterial. H is called the head and (B1,
B2,..., Bn) the body of the clause. Such a
clause, if n = 0, is called a unit clause, if
n > 0, a non-unit clause. When it is clear

from the context, a unit clause (H ←)
will be simply written as H. Therefore,
an OWL document, containing a set of
OWL elements and describing a certain
metadata schema, is directly mapped
onto an OWL/XDD description
comprising solely ground OWL unit
clauses. A constraint in a clause is
expressed by a first-order-logic formula
in which connectives AND, OR and
NOT can be used, enabling inclusion of
negative and complex constraints (3).
Since there exists an execution engine
for general XDD descriptions,
computation or reasoning with
OWL/XDD descriptions can be readily
carried out.

As an example, consider the
OWL clause in Fig. 1. It states that, if a
property type R is an inverse of a
property type P, then, for any resource X
the value of a property type P of which
is a resource Y, one can infer that Y also
has a property type R the value of which
is the resource X. Note that OWL is an
extension of RDF(S), hence it also
employs RDF(S) vocabulary.

Employing simple examples, the
remainder of this section outlines and
demonstrates how OWL/XDD can
satisfy the requirements presented in
Section 2.

Being formal, precise and machine-
processable

As mentioned, OWL/XDD is a
combination of two formal languages,
both of which possess well-defined
semantics. Therefore, OWL/XDD is
formal and precise. Moreover, it is based
on XML and an OWL/XDD description
is a well-formed XML document, hence
it can be processed and analyzed by
machines.

Fig. 1 An example of OWL clauses

<owl:DatatypeProperty rdf:ID="Creator">
 <rdfs:domain rdf:resource="#GeneralDataResource"/>
_ <rdfs:range rdf:resource="#string"/>
</owl:DatatypeProperty>

Fig. 2 A general definition of property type Creator

<owl:Class rdf:ID="MyCollection">
 <rdfs:subClassOf rdf:resource="#GeneralDataResource"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#Creator"/>
 <owl:minCardinality rdf:datatype= "#nonNegativeInteger">1</owl:minCardinality>
 <owl:maxCardinality rdf:datatype="#nonNegativeInteger">5</owl:maxCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

Fig. 3 An application profile component specifying Creator occurrence number

Definition of the meaning of various
types and domain-specific terms

OWL/XDD is an extension of an
ontology language OWL; it is thus
equipped with constructs necessary to
define property types and their values.
Examples of such constructs are
rdfs:domain, rdfs:range, owl:hasValue,
owl:minCardinality,
owl:maxCardinality,
owl:ObjectProperty, owl:Datatype-
Property. The OWL element in Fig. 2

defines Creator as a data property type
the domain of which is General Data
Resource and the range of which is
character strings. As an example of
definitions at the application profile
level, the element in Fig. 3 specifies that
each resource in My Collection, a
subclass of General Data Resource, has
at least one Creator and at most five
Creators.
Expression of term relationships

<$N:classB rdf:about=$S:ResourceY>
$E:instance1Elmt
<$S:propertyR rdf:resource=$S:ResourceX/>

</$N:classB>
 ℜ <owl:ObjectProperty rdf:ID=$S:propertyR>

<owl:inverseOf rdf:resource=$S:propertyP/>
$E:inversePropertyElmt

</owl:ObjectProperty>,
<$N:classA rdf:ID=$S:resourceX>

<$S:propertyP rdf:resource=$S:ResourceY/>
$E:XProperties

</$N:classA>,
<$N:classB rdf:ID=$S:ResourceY>

$E:YProperties
</$N:classB>.

OWL has some simple constructs
which can be used to indicate property
relationships, e.g., owl:inverseOf ,
owl:InverseFunctionalProperty and
owl:equivalentProperty. The OWL
element in Fig. 4 defines that Painter in
Painting Collection is the same as DC’s

Creator. For complex relationships, one
needs to employ OWL clauses.
Furthermore, Paints can be defined to be
owl:inverseOf Painter and the clause in
Fig. 1 can be used to compute and derive
required implicit information.

<owl:DatatypeProperty rdf:ID="Painter">
 <owl:equivalentProperty rdf:resource="http://pur1.org/metadata/dublin-core#Creator"/>
 <rdfs:domain rdf:resource="#PaintingCollection"/>
 <rdfs:range rdf:resource="#string"/>
 </owl:DatatypeProperty>

Fig. 4 An example of term relationship specification

Expression of constraints, conditions
and rules

Since the body and the head of
an OWL/XDD clause, respectively, can
be viewed as a condition and an action,
rules and conditions can readily be
modeled. Moreover, a component of a
clause body can be any first-order
logical formula and complex constraints
can thus be expressible. For simple
constraints such as the one in Fig. 3, one
may only employ OWL constructs.

S p e c i f i c a t i o n o f s y n t a c t i c
transformation

An OWL/XDD can also be
interpreted as a rewriting rule in which
its body is an input and its head an
output, hence it can function like a rule
in XSLT and perform syntax
transformation. As long as the head of a
clause is a well-formed XML element,
its content can be in any format, hence
one metadata schema element can be
instantiated into a metadata element with
a number of different forms.

4 Conclusions

Metadata will certainly be an
indispensable technology for efficient
sharing of information resources. Its
usage will spread horizontally to cover a
variety of domains and applications, and
vertically to include both simple
metadata as well as complex, structured-
value and multi-layer metadata. A
language employed to specify the
schemas of such metadata must be
expressive and readily extensible. Such a
language has been sketched. Detailed
representation of schemas, application to
metadata schema registries as well as
generation of metadata instances form
part of future work.

References

1. R. Heery and M. Patel. Application
profiles: mixing and matching metadata
schemas. Ariadne Issue 25, 2000
2. S. Sugimoto, et al. Developing
communi ty -o r i en t ed me tada t a
vocabularies: Some case studies. In
Proc. Digital Libraries and Knowledge
Communities, pp. 128-135, 2004
3. http://www.w3.org/TR/2004/REC-
owl-features-20040210/
4. C. Anutariya, V. Wuwongse and K.
Akama. XML Declarative Description

with First-Order Logical Constraints. In
Proc. Knowledge Grid and Grid
Intelligence, 2003

