

Search and Delivery of Standardized Learning Resources
Based on SOAP Messaging and Native XML Databases

Xin Xiang, Ling Guo, Yuanchun Shi

State Key Lab of Intelligent Technology and Systems,
Computer Science Department, Tsinghua University, Beijing, P.R. China

{xiangx01@mails., guoling02@mails., shiyc@}tsinghua.edu.cn

Abstract

With the progress of Web-based learning technologies,
standardized digital repositories and learning management
systems are becoming prevalent over time. The
heterogeneity in underlying databases and access methods,
however, makes it difficult to share and exchange the
learning resources between them. In this paper, we propose
an architecture for the search and delivery of learning
resources. Based on the SOAP transmission protocol, the
architecture seeks to improve interoperability between
heterogeneous E-Learning implementations. We also
present a general-purpose query language as a building
block of the architecture. The language provides a unified
query interface for resource repositories, thereby shielding
the users from the differences in underlying databases and
metadata schemas. To highlight our design, an
implementation using LOM, native XML database and
XPath is presented. The last part of this paper discusses
technical and pedagogical issues of concern regarding the
launching of contents from within standardized LMSs..
Keywords: LOM, Dublin Core, SCORM, Metadata, Content
Package, SOAP, XML, XPath

1. Introduction

The recent approval of LOM (Learning Object

Metadata) standard[1] by the IEEE-Standards Association
and of Dublin Core Metadata Element Set[2] by ISO
marked a new milestone in the field of metadata
standardization. It is believed that in the near future, they
are to be widely accepted by industry and academia alike.

Whereas metadata and content related E-Learning
standards are intended to specify the description of
metadata and content, the SCORM (Sharable Content
Object Reference Model) model[3][4] extends these
standards by further specifying the run-time environment of
LMSs (Learning Management Systems), including APIs
and data elements needed to launch the SCOs (Sharable
Content Objects). With the maturity of these standards,
digital repositories and LMSs conforming to them have
been developed and deployed all over the world. Though
these E-Learning standards are developed to achieve the
global accessibility of learning resources, they provide no
definition of the communication model for the exchange of

learning resources between heterogeneous implementations.
As a result, current E-Learning systems are largely isolated
applications in terms of interoperability. As stated in the
newly published IMS Digital Repositories Interoperability
Specification[5], “Finding content, when there are multiple
repositories of content to be searched, is a complex
problem. The problem is further aggravated when the
repositories have heterogeneous representations of meta-
data and heterogeneous access methods.”

Investigations have been conducted to address the issue
of searching disparate repositories for contents. For the
communication between heterogeneous systems, the SOAP
(Simple Object Access Protocol)[6] based communication
model is considered an efficient and ease-to-use method in
a Web-based E-Learning environment. Meanwhile, to hide
the heterogeneity of repositories from users, a unified query
language tailored to the search of learning resources is
indispensable. A recent report on digital repositories
released by ADL[7] discusses some standards for
networked repository architectures and other important
infrastructure technologies that may be useful for managing
SCORM compliant contents. [8][9] present a reference
model of the digital repository domain and a recommended
binding technique using SOAP and XQuery[10]. [11]
highlights the effectiveness of SOAP in connecting E-
Learning applications. [12] also proposes a SOAP message
format and a unified XML query structure used in the
access and exchange of learning objects. [13] introduces an
unstructured canonical attribute model containing most
frequently used attributes in queries. It is used to hide the
collection details and is mapped to its native equivalent
upon query request.

Based on the reference model in [5], we propose an
architecture that partially addresses the aforementioned
problems. By using SOAP messaging and a general-
purpose query language, the model enables the search and
delivery of resources in a metadata representation and query
language independent fashion. To highlight our design, an
implementation using LOM, native XML database and
XPath[14] is presented.

The remainder of this paper is organized as follows:
section 2 introduces SOAP messaging and native XML
databases, the two supporting technologies of learning
resource repositories. Section 3 presents the architecture of
the communication model, while the following sections,
namely section 4, 5 and 6, cover implementation details,

that is, the translation of query requests, the SOAP based
transmission of queries and results, and the delivery of
learning resources. Section 7 discusses technical and
pedagogical issues of concern with respect to the launching
of contents and the learning scenario of SCORM. Section 8
concludes this paper.

2. Supporting Technologies

2.1. Simple Object Access Protocol (SOAP) Messaging

The concept of service presented in [11][15] is very

helpful. They propose that each application provides some
kind of services, and applications share their services by
messaging. Henceforth, aside from the existing metadata
and content related E-Learning standards, some
communication mechanism is indispensable in connecting
standardized learning applications (services).

Considering the fact that Web (HTTP) is and will
continue to be an important technological base of E-
Learning, and that XML has become the mostly used
binding technique of learning technology standards, it is
straightforward to adopt the protocol capable of
transmitting data encoded in XML through HTTP, that is,
SOAP messaging.

As recommended in [5][7], the fundamental SOAP
model is comprised of stateless one-way messaging peers in
a decentralized distributed environment. SOAP does not
specify semantics for the application-specific data it
conveys, but rather provides a common framework for
enabling application-to-application data exchange[7].
Furthermore, in an IMS DRI[5] compliant learning object
repository, SOAP messages with attachments should be
used to transmit an IMS compliant content package in
fulfilling the “Submit” function. In short, SOAP messaging
could address most needs arising in the search and delivery
of standardized learning contents in an increasingly
distributed environment.

2.2. Native XML Databases and XML Query Language

The SCORM content aggregation specification[3]
comprises two models: a metadata model specifying the
metadata elements of learning resources, and a content
packaging model representing content structure. Both of
them are hierarchical, which is convenient for representing
data consisting of many elements and sub-elements.

XML is perfectly suited for representing hierarchical
models, as exemplified by the LOM and content packaging
XML binding specifications published by IMS[16][17],
both of which are adopted in SCORM.

Although relational database products today provide
built-in XML document and query support, native XML
databases are arguably the best choice for metadata storage.
The reasons are listed as follows[7]:

• XML documents could be stored in native XML
databases in a natural and effective way without
any data type mapping;

• Native XML databases preserve the physical
structure of the original documents as well as
comments, DTDs, etc;

• Native XML databases can store documents
without knowing the XML schema or DTD;

• Native XML databases are relatively small, cheap
and easy to deploy.

As far as query language is concerned, IMS

recommends XQuery, but in current implementations,
XPath is more frequently used. Though it is considered that
XPath does not have enough expressiveness to function as a
database query language, it continues to be popular and
could be easily replaced with XQuery whenever necessary.
Databases supporting the XPath query language include not
only open source native XML databases such as Xindice[18]
and 4Suite[19], commercial native XML databases such as
Tamino[20], Ipedo[21] and GOXML DB[22], but relational
database products like Oracle 8i and 9i as well.

3. Architecture

Basically, there is no one-size-fits-all architecture or
framework that could address all the problems in the field
of learning resource repository construction and
standardized content delivery. The proposed architecture
focuses on the effective sharing and exchange of
standardized contents among heterogeneous repositories,
learning management systems and clients in a decentralized
environment.

The proposed architecture comprises three types of
participants as depicted in Figure 1:

• Learning Resource Repositories
Standardized learning resource repositories provide

massive storage for learning resources and metadata, and a
uniform interface for query and delivery through SOAP.
The repositories deal with two types of requests: the query
requests searching for specific metadata, and the delivery
requests asking for the actual content. The query requests,
expressed in the general-purpose query language, are
translated into native equivalents which will then be
submitted to the local database. The resulting metadata
records will be encoded in XML for SOAP transmission.
Similarly, upon a delivery request, the learning resource is
packaged in a SOAP message and returned.

• Learning Management Systems
LMSs play the role of SOAP clients and application

servers simultaneously. As SOAP clients, they request
metadata and contents from the repositories via SOAP
messaging; and as application servers, they forward the
clients’ query and delivery requests to repositories, and
prepare the returned metadata and contents for clients’

Figure 1. The Architecture of Content Search and
Delivery.

browsing.

• Clients
Clients use common Web browsers to view the

metadata information and the launched SCOs through
HTTP sessions.

It is possible for a client and an LMS to reside in the

same host, e.g. a PC may have a lightweight personal LMS
(such as L1 or L3 in Figure 1) capable of requesting
contents, launching SCOs, and providing application
service to a local browser.

A typical learning scenario taking place in this
architecture is described as below:

1. Client C1 logs on to LMS L2;
2. Client C1 issues a request for conformant contents

on data structure in computer science;
3. LMS L2 forwards the request to repository R1, R2

and R3 in turn through SOAP messaging;
4. Metadata records satisfying the request are

returned from the repositories, also through SOAP

messaging. After being returned, they are cached in LMS
L2;

5. Client C1 looks through the resulting metadata of
contents and issues a request to download one of them;

6. LMS L2 forwards the request to the repository
storing that content;

7. The repository delivers the requested content to
LMS L2 by SOAP massaging with attachments;

8. LMS L2 launches the SCOs packaged in the
delivered content from within its SCORM compliant run-
time environment.

This architecture to some extent integrates existing

heterogeneous learning resource repositories. Regardless of
the underlying database and metadata schema of a
repository, the only modification needed is to add a SOAP
server and a translator tailored to its internal data structure,
for the architecture, the unified query language, the
messaging mechanism, the metadata information and the
packaged contents are all platform and database neutral.

The LMSs play a key role in the scenario. It is the
LMSs where most of the application logics of learning
activities are performed, including search, evaluation,
delivery and launch. To make a SCORM compliant LMS
work in this scenario, the SOAP massaging mechanism
needs to be implemented in addition to standard APIs.

The LMSs may vary in terms of size, performance,
functionality and scalability. The lightweight LMSs, such
as LMS L1 and LMS L3 in Figure 1, could be referred to as
Personal Learning Management Systems. They are for
personal use, functionally and structurally compact, and
could be easily deployed on a home PC. On the other hand,
Public Learning Management Systems, such as LMS L2 in
Figure 1, have the full functionality of an LMS and are able
to serve a group of users of varying sizes.

4. Translation of Query Requests

In [7], XQuery is the recommended query language to

express query requests. Considering the heterogeneity in
existing learning resource repositories, however,
practitioners would rather have a unified query language
than having to digest one for each implementation. In our
architecture, the repository is responsible for translating the
general query expression into its native equivalent, e.g.
SQL for a relational database, and XPath or XQuery for a
native XML database depending on the query language
supported.

The process of handling query and delivery requests in
a repository with a native XML database is depicted in
Figure 2.

The general-purpose query language could be used to
express simple queries with searchable attributes such as
“title”, “language”, “description” and “keyword”. Logical
and relational operations, for example “and”, “or”, “equals”,
“not equals”, “greater than”, “less than”, “greater than or
equals”, and “less than or equals”, are supported along with
“contains”, an important keyword in query expressions.

Translator

SOAP Server

Resource RepositoryMetadata Repository

General-Purpose
Query Language

XPath

Metadata
Records

 Resource ID
Resource

Describe

Search & Delivery Request Reply

Figure 2. The Process of Handling Search & Delivery
Requests in a Repository with a Native XML Database.

QUERY ::= SUM EOL | EOL | EOF
SUM ::= TERM ("OR" TERM)*
TERM ::= UNARY ("AND" UNARY)*
UNARY ::= "NOT" ELEMENT | ELEMENT
ELEMENT ::= ATTRIBUTE
 ("EQUALS" | "CONTAINS" |
 "NEQ" | "LT" | "GT" |
 "LE" | "GE") VALUE |

 "(" SUM ")"
ATTRIBUTE ::= "CATALOG" | "ENTRY" |
 "TITLE" | "LANGUAGE" |
 "DESCRIPTION" |
 "KEYWORD" | "CREATOR" |
 "DATE" |
 "METADATASCHEMA" |
 "METADATALANGUAGE" |

 "FORMAT" |
 "LEARNINGRESOURCETYPE" |
 "COVERAGE" |
 "SUBJECT"
VALUE ::= "'" (LETTER |
 ["0" - "9", " "])+ "'" |

 "\\"" (LETTER |
 ["0" - "9", " "])+ "\\""
LETTER ::= ["-", "\\u0024",
 "\\u0041"-"\\u005a",
 "\\u005f",
 "\\u0061"-"\\u007a",
 "\\u00c0"-"\\u00d6",
 "\\u00d8"-"\\u00f6",
 "\\u00f8"-"\\u00ff",
 "\\u0100"-"\\u1fff",
 "\\u3040"-"\\u318f",
 "\\u3300"-"\\u337f",
 "\\u3400"-"\\u3d2d",
 "\\u4e00"-"\\u9fff",
 "\\uf900"-"\\ufaff"]
EOL ::= "\
"

Figure 3. Formal Grammar of a General-Purpose Query
Language.

The formal grammar of the general-purpose query

language is given in Figure 3 using BNF notation.
As can be seen from the declaration of the token

“ATTRIBUTE”, this query language is designed to be
schema-neutral by extracting the mostly used searchable
elements defined in existing metadata schemas, such as
Dublin Core, LOM and the core element set of CELTS 3.1
(a subset of the IEEE LOM model)[23].

The translation from this query language to XPath has
been implemented through a LL(1) parser generated by
JavaCC[24]. The rudimentary rule of the translation is to
produce an XPath language element upon each derivation
during the process of parsing. By this kind of translation, a
query expression in this general-purpose query language:

TITLE CONTAINS “DATA STRUCTURE”

will produce something like the XPath expression

below in a LOM conformant repository:

/lom[contains(general/title/langstrin

 g, “DATA STRUCTURE”)]

and (as per the Dublin Core XML guidelines[25]) will

generate the following expression in a repository complying
with Dublin Core.

/dc:metadata[contains(dc:title, “DATA

 STRUCTURE”)]

Similarly, by

DESCRIPTION CONTAINS “UNIX” AND LANGU

AGE EQUALS “en”

we will get

/lom[contains(general/description/lan

gstring, “UNIX”) and general/language=”e
n”]

in a LOM conformant repository, and

/dc:metadata[contains(dc:description,

 “UNIX”) and dc:language=”en”]

in a DC conformant one.
Now that we have successfully implemented the XPath

translator, its SQL and XQuery counterparts could be
implemented in a similar approach.

This query language is certainly not a fully qualified
database query language for it does not allow for joins or
sorting of the query results, nor does it support recursive
query. But the initiative is to equip LMSs with a
lightweight and understandable query language that could

be easily translated into widely used query languages such
as SQL and XPath. It is relatively natural and powerful in
comparison with the XML query structure specified in [12],
and is intended to bridge the gap between a database-
specific query language and the natural language. A query
expression in this language could be conveniently
composed through trivial combination of the input of a
well-structured HTML form in an LMS.

Given its simple and scalable grammar, the general-
purpose query language could easily be extended in terms
of expressiveness.

5. SOAP Based Query Requests and Result

Transmission

A query request expressed in the general-purpose query

language is packaged in a SOAP envelope. As discussed
before, it is left to the repository to perform the translation,
so as to preserve the generality of its query interface.

Figure 4 shows a sample request.

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://
schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <query>
 TITLE CONTAINS "Data Structure"
 </query>
 </soapenv:Body>
</soapenv:Envelope>

Figure 4. A SOAP Message Containing the Query
Request.

Like the query requests, the resulting metadata records

are also delivered in a SOAP envelope as demonstrated in
Figure 5.

6. Delivery of Learning Resources

After having retrieved the resulting metadata records,

the user may go over the metadata information, and ask for
one or more resources of interest.

Since practicable global identification systems of
digital learning resources are outside the scope of this
paper, a locally unique identifier is used here for
demonstration. If possible, it can be replaced by any global
identifier in use.

A user requests a learning resource by sending the
locally unique ID to the LMS which forwards the request to
the repository containing the requested resource through
SOAP messaging as depicted in Figure 6.

The requested content is delivered through SOAP
massaging with attachments.

The reasons for choosing SOAP for content delivery as
opposed to using HTTP or FTP proposed in IMS DRI –

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://
schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <lom xmlns:src="http://
 xml.apache.org/xindice/Query"
 src:col="/db/metadata"
src:key="54466ea634ce5a11000000f4ce48647
4">
 <general>
 <identifier>
 <catalog>Local ID</catalog>
 <entry><langstring>
 4
 </langstring></entry>
 </identifier>
 <title>
 <langstring xml:lang="en">
 Data Structure in C++
 </langstring>
 </title>
 <language>en</language>
 <description>
 <langstring
 xml:lang="en">
 A Comprehensive C++ Data
Structures Programming Course.
 </langstring>
 </description>
 <keyword>
 <langstring xml:lang="en">
 Programming Language
 </langstring>
 </keyword>
 <keyword>
 <langstring xml:lang="en">
 Data Structure
 </langstring>
 </keyword>
 </general>

 </lom>
 </soapenv:Body>
</soapenv:Envelope>

Figure 5. A SOAP Message Containing the Resulting
Metadata Record.

Core Functions Best Practice Guide Specification[9] are
stated as follows:

1. SOAP is based on HTTP, hence is easy to
implement, platform independent and firewall-friendly;

2. The SOAP implementation hides the detail of the
repositories from the LMSs, thereby providing a uniform
access method of learning contents;

3. As metadata and contents are transferred in a
common mechanism, system consistency and compactness
are enhanced.

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://
schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <ns1:request
 soapenv:encodingStyle="http://
 schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns1="urn:DeliverService">
 <source xsi:type="ns1:String">
 4
 </source>
 </ns1:request>
 </soapenv:Body>
</soapenv:Envelope>

Figure 6. A SOAP Message Containing the Requested
Resource ID.

A SOAP message snippet containing the delivered

content is shown in Figure 7.

------=_Part_2_3521712.1052464544911
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: binary
Content-Id:
<3FC4689165C63FB9F92319D360373000>

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://
 schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <ns1:requestResponse
 soapenv:encodingStyle="http://
 schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns1="urn:DeliverService">
 <returnqname
href="cid:48613F8DDDF74EB4237538A2DA647F
77" xmlns:ns2="http://xml.apache.org/
xml-soap"/>
 </ns1:requestResponse>
 </soapenv:Body>
</soapenv:Envelope>
------=_Part_2_3521712.1052464544911
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-Id:
<48613F8DDDF74EB4237538A2DA647F77>

......CONTENT......

------=_Part_2_3521712.1052464544911--

Figure 7. A SOAP Message Containing the Content.

The two bold parts of the snippet represent the SOAP

message body and the attached content respectively.

After being delivered, the standard content is unzipped
by the requesting LMS. If the content is a SCORM
compliant courseware package, a persistent object (database
or disk file) will be built to maintain the persistence of run-
time environment data elements implemented by the LMS.
Moreover, the LMS will extract the course structure by
parsing the standard manifest file wrapped in the content
package, and the sequencing method will be determined
depending on the sequencing mechanism implemented by
the LMS.

On completion of the actions above the course is ready
for future launch.

7. Launching of SCOs from within SCORM
Compliant Run-Time Environment in
Public and Private Learning Management
Systems

Upon the request of launching, the relevant SCO is

launched as per the SCORM run-time environment
specification[4].

A comprehensive public learning management system
should implement the following function regarding SCO
launching:

• Fully Functional API Adapter
The LMS should supply an API adapter that

implements the required functionality described in [4].
• Comprehensive Data Elements
The LMS should implement most data elements

defined in [4], including elements describing student
information, learner performance and comment data. By
doing so, it enables full support of the SCORM run-time
environment data model and utmost trackability of
information about the launched SCOs.

• Persistence Through Database
Database-enabled persistence mechanism should be

provided to maintain the persistence of the complex data
elements implemented by the LMS. The database could
extensively and efficiently record the learner information,
SCO information and learner performance, thereby
fulfilling the responsibility of a public LMS.

A personal learning management system, however,

need not implement as much functionality as a public
learning management system does.

• Simple API Adapter
A personal LMS should supply a simple API adapter

that implements the basic functionality during launching of
SCOs, for instance, the LMSInitialize and LMSFinish
methods described in [4].

• Reduced Data Elements Set
As proposed in [26], the set of data elements

implemented by a personal LMS might be selectively
reduced in order to improve the performance of LMS while
maintaining its basic functionality.

• Lightweight Persistence Mechanism

Since a personal LMS cares little about the
management of the learner information, the detailed SCO
information and the evaluation of learner performance, it is
recommended that the basic disk file-based persistence
mechanism be implemented, making the LMS small,
efficient and easy to deploy.

Although SCORM claims to be pedagogically neutral,

the learning scenario of launching SCOs in a Web-based
run-time environment has been deemed individual-centric,
even in a pubic learning management system environment.
The purpose of the differentiation of personal LMSs from
public ones is to adapt the LMSs in different learning
environments, thus avoiding a one-size-fits-all solution in
this rapidly changing E-Learning application market. And it
is the responsibility of LMS vendors to tune their products,
not only to fit training use, but also to meet the progressive
need for collaborative learning.

8. Conclusion and Prospect

In this paper, we propose a distributed learning
resource search and delivery architecture using SOAP
messaging. In the architecture, a general-purpose query
language is designed as a common query interface of
learning resource repositories. Both the architecture and the
query language are independent of platform, database and
metadata schema, seeking to achieve interoperability
between heterogeneous repositories found in current
practice of E-Learning applications.

At this time, a campus-wide E-Learning application
conforming to the proposed architecture, with Xindice as its
XML repository, Axis[27] as the SOAP implementation,
and WebLogic as the application server, is being developed
in Tsinghua university. A public learning management
system with extended data element set based on Oracle 8i
database has been implemented to fit the need of college
education.

The architecture may be improved in the following
aspects:

• Introduction of Subscription/Alert Mechanism
As a possible future direction of the IMS DRI project,

the subscription/alert function is an effective method to
facilitate search and exchange of learning resources.
However, the simple communication model might be
complicated by the introduction of a new protocol (for
example, SMTP) used to implement the function.

• Adoption of DOI
The Digital Object Identifier System[28], as proposed

in IMS DRI Specification[9], is a possible future location
service of digital learning resources. It could be used as a
globally unique identifier system for resolving the location
of the learning objects in a network of distributed
repositories as opposed to the much more limited locally
unique identifier system demonstrated in section 6.

• Support for XQuery Language

As a matter of fact, XPath is currently the mainstream
native XML database query language. However, it is
believed that in the near future, the relatively powerful and
advanced XQuery language is to be supported by major
database vendors, learning resource repository developers
and academia. Hence a translator will be implemented to
turn the general-purpose query language into XQuery.

Acknowledgements
This material is based upon work supported by the Ministry of
Education and the National Natural Science Foundation in China.

References

[1] IEEE Learning Technology Standard Committee
Working Group 12, “Final 1484.12.1 LOM draft standard”,
http://ltsc.ieee.org/doc/wg12/LOM_1484_12_1_v1_Final_
Draft.pdf, September 2002.
[2] Dublin Core Metadata Initiative, “Dublin Core
Metadata Element Set, Version 1.1”,
http://dublincore.org/usage/terms/dc/current-elements/,
October 2002.
[3] Advanced Distributed Learning, “The SCORM
Content Aggregation Model, Version 1.2”,
http://www.adlnet.org/ADLDOCS/Documents/SCORM_1.2
_CAM.pdf, October 2001.
[4] Advanced Distributed Learning, “The SCORM Run-
Time Environment, Version 1.2”,
http://www.adlnet.org/ADLDOCS/Document/SCORM_1.2
_RunTimeEnv.pdf, October 2001.
[5] IMS Global Learning Consortium, “IMS Digital
Repositories Interoperability – Core Functions Information
Model Version 1.0 Final Specification”,
http://www.imsglobal.org/digitalrepositories/driv1p0/imsdri
_infov1p0.html, January 2003.
[6] Box Don, D. Ehnebuske, G. Kakivaya, A. Layman, N.
Mendelsohn, H. F. Nielsen, S. Thatte, D. Winer, “Simple
Object Access Protocol (SOAP) 1.1”,
http://www.w3.org/TR/SOAP/, May 2000.
[7] Advanced Distributed Learning, “The Emerging and
Enabling Technologies for the Design of Learning Object
Repositories Report”,
http://www.adlnet.org/adldocs/Documents/ADLRepository
TechnicalInvestigationReport.doc, November 2002.
[8] IMS Global Learning Consortium, “IMS Digital
Repositories Interoperability – Core Functions XML
Binding Version 1.0 Final Specification”,
http://www.imsglobal.org/digitalrepositories/driv1p0/imsdri
_bindv1p0.html, January 2003.
[9] IMS Global Learning Consortium, “IMS Digital
Repositories Interoperability – Core Functions Best Practice
Guide Version 1.0 Final Specification”,
http://www.imsglobal.org/digitalrepositories/driv1p0/imsdri
_bestv1p0.html, January 2003.
[10] Boag, S., D. Chamberlin, M. F. Fernandez, D. Florescu,
J. Robie, and J. Siméon, “XQuery 1.0: An XML Query
Language”, http://www.w3.org/TR/xquery/, May 2003.

[11] Wilson Scott, “Gluing learning applications together
with SOAP”,
http://www.cetis.ac.uk/content/20011015153128, October
2001.
[12] The Learning Federation, “Learning Object Repository
Access and Exchange Web Service Specification”,
http://www.thelearningfederation.edu.au/repo/cms2/tlf/publ
ished/3859/docs/SOAP_Specification_V0_4.pdf, January
2003.
[13] Michelle Baldonado, Chen-Chuan K. Chang, Luis
Gravano, Andreas Paepcke, “The Stanford Digital Library
metadata architecture”, International Journal on Digital
Libraries, Volume 1, Number 2, September, 1997.
[14] Clark James, S. DeRose, “XML Path Language (XPath)
Version 1.0”, http://www.w3.org/TR/xpath/, November
1999.
[15] Wilson Scott, “The next big thing? Three architectural
frameworks for learning technologies”,
http://www.cetis.ac.uk/content/20010828163808, August
2001.
[16] IMS Global Learning Consortium, “IMS Learning
Resource Meta-data XML Binding Version 1.2.1 Final
Specification”,
http://www.imsglobal.org/metadata/imsmdv1p2p1/imsmd_
bindv1p2p1.html, September 2001.
[17] IMS Global Learning Consortium, “IMS Content
Packaging XML Binding Version 1.1.2 Final Specification”,
http//www.imsglobal.org/content/packaging/cpv1p1p2/imsc
p_bindv1p1p2.html, August 2001.
[18] http://xml.apache.org/xindice/
[19] http://4suite.org/
[20] http://www.softwareag.com/tamino/
[21] http://www.ipedo.com/
[22] http://www.xmlglobal.com/prod/db/
[23] Xin Xiang, Zhongnan Shen, Ling Guo, Yuanchun Shi,
“Introduction of the Core Elements Set in Localized LOM
Model”,
http://lttf.ieee.org/learn_tech/issues/january2003/index.html
#6, IEEE Learning Technology Newsletter, Volume 5, Issue
1, January 2003.
[24] http://www.webgain.com/products/java_cc/
[25] http://dublincore.org/documents/dc-xml-guidelines/
[26] Qu Changtao, Nejdl Wolfgang, “Towards
Interoperability and Reusability of Learning Resources: a
SCORM conformant Courseware for Computer Science
Education”, Proc. of 2nd IEEE International Conference on
Advanced Learning Technologies, September 2002.
[27] http://ws.apache.org/axis/
[28] http://www.doi.org

