
DC-2001, October 24-26, 2001, NII, Tokyo, Japan

242

Qualified Dublin Core using RDF for Sci-Tech Journal Articles

Thomas G. Habing, Timothy W. Cole, and William H. Mischo
Grainger Engineering Library Information Center
University of Illinois at Urbana-Champaign, USA

thabing@uiuc.edu, t-cole3@uiuc.edu, w-mischo@uiuc.edu
http://dli.grainger.uiuc.edu/idli/idli.htm

Abstract

As a participant in the D-Lib Test Suite project,
the University of Illinois maintains a full-text XML
testbed containing over 65,000 scientific and
technical journal articles. For this project, we have
developed techniques to generate and utilize
Qualified Dublin Core (DCQ) metadata using RDF.
In this short paper we will provide a brief overview
of our digital collection, demonstrate DCQ metadata
creation and usage for items in our collection, and
finally summarize some of the issues that arose as a
consequence of our decision to use DCQ.
Keywords: Dublin Core, Metadata, Electronic
Publishing, Digital Library, XSLT, XML, RDF.

1 History and description of the testbed

In 1994 a digital library testbed containing
SGML-formatted journal articles was created as part
of a Digital Library Initiative I project at the
University of Illinois at Urbana-Champaign (UIUC)
[1]. In 1998 the testbed was converted to XML and
continued as part of the ongoing Corporation for
National Research Initiative’s (CNRI) D-Lib Test
Suite program. During this time various professional
society publishers have contributed testbed content.
Current participants include: the Association for
Computing Machinery (ACM), the American
Institute of Physics (AIP), the American Physical
Society (APS), the American Society of Civil
Engineers (ASCE), Elsevier Science, and the
Institution of Electrical Engineers (IEE). ASM
International also has contributed several volumes of
their ASM Handbook. The Testbed currently
contains some 65,000 articles from approximately 50
journals. A production Web-based search and
retrieval interface, DeLIver (Desktop Link to Virtual
Engineering Resources) has been implemented as
part of the testbed [2]. Contributing publishers and
other collaborating partners, including the Naval
Research Laboratory and NTT Learning Systems,
supplement the CNRI grant with additional monetary
and in-kind support.

2 Usage of Metadata in Illinois Testbed

Since the project’s inception, metadata issues have
been an active concern. Metadata records are used to
fulfill several important functions.

2.1 Normalization

Metadata provide normalized information across
key fields extracted from otherwise heterogeneous
DTDs. This is required not only to facilitate search
and discover, but also to provide common and easily
displayable search results. For example, the markup
used for bibliographic data about an article (including
referenced articles) varies widely from publisher to
publisher. However, our metadata generation
processes extract these various metadata into a
common scheme based on DCQ and RDF. In
addition to the typical bibliographic metadata, we
also normalize and maintain metadata such as figure
and table captions, author affiliations, subject
keywords, abstracts, and tables of contents.

2.2 Value-added

Metadata also facilitate inclusion of value-added
information beyond what is available in the marked-
up full-text articles. For example, links to referenced
and referencing works can be maintained. These can
be links to the locally maintained full-text, to
surrogate records in various Abstracting and
Indexing databases, such as INSPEC or Compendex,
or to Digital Object Identifier (DOI) links obtained
from the CrossRef publisher initiative [3] during the
metadata generation process.

2.3 Presentation

Metadata are used for display of intermediate
search results, extended citations, and for tables of
contents. Metadata also are dynamically merged
with the article full-text at render time. This allows
access from the full-text article view to the various
value-added features. It also allows us to provide
these features to the user while simultaneously

©2001 National Institute of Informatics

Proc. Int’l. Conf. on Dublin Core and Metadata Applications 2001

243

maintaining the archival integrity of the original full-
text files as provided by the publishers. (Metadata
files are stored separate from article full-text.)

Figure 1, showing an extended citation for one of
the Testbed articles, illustrates metadata maintained.

Figure 1. Sample Extended Citation

DC-2001, October 24-26, 2001, NII, Tokyo, Japan

244

3 Metadata extraction process

The XML metadata files are created by
transforming the source full-text XML using
Extensible Stylesheet Language Transformations
(XSLT). These transformations are managed by a
driver program written in Microsoft Visual Basic
which also manages other aspects of the overall
document processing flow.

Depending on the publisher's markup, in some
cases there are required bibliographic metadata
elements that cannot be derived explicitly from the
source full-text. For example, some publishers omit
volume, issue, and page numbers, or issue dates from
their full-text markup. In these cases, the required
values are derived by the VB program, possibly from
operator inputs or by parsing file names, and they are
then passed to the XSLT as parameters. Except for
these parameters, all other processing is done entirely
by the XSLT.

3.1 Metadata mappings

In many cases, the transformation of full-text
XML elements into DCQ RDF properties is
straightforward. For example, the following source
XML:

<titlegrp>
 <title>This is the Long Title</title>
 <alttitle>Short Title</alttitle>
</titlegrp>

is easily transformed into:
<dc:title>This is the Long Title</dc:title>
<dcq:alternative>Short Title</dcq:alternative>

by a simple one-to-one mapping.
However, the derivation of other properties may

require complex processing. For example,
<dcq:tableOfContents>
 1 Introduction;
 2 Outline of the algorithm;
 2.1 The discretization error estimate ;
 3 Concluding remarks;
</dcq:tableOfContents>

requires extracting section and sub-section headings
from throughout an article.

Another example requiring more complex
processing is mathematics. Because mathematical
markup needs to be preserved in the metadata, many
of the RDF property elements require the
rdf:parseType='Literal' attribute. For example:

<dc:title rdf:parseType='Literal'>
 <math xmlns='&MathML;'>
 <msup><mi>x</mi><mn>2</mn></msup>
 </math> is x squared
</dc:title>

Deriving this is complicated because there may be
additional markup that needs to be discarded, while

the math markup is preserved. This means that a
simple <xsl:copy-of> cannot be used. Instead, for
each node in the source element an XSLT template is
recursively invoked. The template has code to
determine whether a sub-element must be preserved
or whether it can be discarded, only saving its textual
content.

3.2 Advanced XSLT techniques

There are also a few cases when XSLT extension
mechanisms must be invoked to perform processing
which is not possible using only native XSLT. One
example is date conversion. Whenever possible,
dates are converted into the W3CDTF encoding.
However, XSLT has no built-in date conversion
functions. Instead an XSLT Extension Function,
written in JavaScript, is invoked.

In addition, much of the value-added metadata,
such as links to cited or citing articles, is obtained
from sources outside the article full-text XML. This
is accomplished by using the XSLT document()
function. This function takes the URL of an XML
document and returns a node-set representing the
complete XML tree for that document. Nodes or
fragments from this tree can then be used in the
XSLT. The URLs are constructed by concatenating
various fixed strings and metadata elements together
from the source XML document. For example, the
following XSLT snippets:

<xsl:variable name="XREF_URL" select="
concat($XREF_BASE_URL, '&qissn=', $ISSN,
'&qyear=', substring-before($IssueDate, '-'),
'&qvolume=', $Volume, '&qpage=',
/artcl/jart/jafm/pubfront/fpage)"/>
…
<xsl:variable name="XREF"
select="document($XREF_URL)"/>
…
<xsl:element name="dc:identifier" >
 <xsl:element name="uiLib:DOI">
 <xsl:element name="rdf:value">
 <xsl:value-of select="$XREF/kernel/doi/string"/>
 </xsl:element>
 </xsl:element>
</xsl:element>

results in the following RDF:
<dc:identifier>
 <uiLib:DOI>
 <rdf:value>10.1234/1.23456789</rdf:value>
 </uiLib:DOI>
</dc:identifier>

In this way, the Digital Object Identifier (DOI) for an
article can be obtained from the CrossRef system via
an OpenURL [4]. Similar techniques are used to
retrieve value-added metadata about citations, such
as links and DOIs.

XSLT is used to create the RDF metadata file.
Once the RDF is created, XSLT is also used to:

Proc. Int’l. Conf. on Dublin Core and Metadata Applications 2001

245

• Generate RDF triples that are inserted into a
simple relational database for indexing and
searching.

• 'Dumb-down' to unqualified Dublin Core for use
with protocols such as Open Archives (OAI)
Protocol for Metadata Harvesting.

• Transform RDF metadata into HTML for display
in a Web browser.

4 Summary of issues

Until early 2001 there was minimal guidance on
encoding DCQ using RDF. Only trivial or very
simple examples were available. It was the
availability in early 2001 of a redraft of Expressing
Qualified Dublin Core in RDF [5], in combination
with existing RDF documentation, notably the RDF
Model and Syntax Specification [6], that finally
allowed us to utilize DCQ for our project.

Early on, however, we discovered that the DCMI-
approved DCQ refinements and encodings were not
sufficient for all of our needs. While work on
additional refinements and encodings is underway,
the existing guidance from some of the DCMI
Working Groups, such as the Citation Working
Group and the Agents Working Group, is sparse and
not in final form. Few examples are available.
Pending further progress by these Working Groups,
we needed extensions in three areas. To do this we
created our own namespace (uiLib in the following
examples) and an RDF schema for that namespace.

4.1 Citation-related extensions

Local extensions were required to represent
bibliographic citation metadata, such as journal title,
ISSN, CODEN, volume, issue, page, etc. These
metadata seemed to fall under the purview of the
Citation Working Group. The existing guidance
provided by the Working Group was useful, but
didn't contain enough detail. In order to allow the
desired types of citation linking, we had strict
requirements for fine-grained control of and access to
these metadata elements. Based on the various
working drafts and also on proposals coming from
the mailing lists, we used three overlapping methods
to express this metadata, both for the articles
themselves and also for the citations.

The first method was to create a local sub-property
or refinement of Identifier, "uiLib:citation." This
refinement is designed to contain a human-readable
citation. For example:

<uiLib:citation>A. Author. "A Title" Some Jrnl. 25.3
(Sep. 1999): 279-305.</uiLib:citation>

This content is used primarily for display purposes.
The second method was to create a local encoding

for Identifier, following the OpenURL scheme [7].
For example:

<dc:identifier>
 <uiLib:OpenURL-OBJECT-METADATA-ZONE>
 <rdf:value>
 genre=article&aulast=Author&
 issn=0098-3500&volume=25&
 issue=3&spage=279&date=1999-09
 </rdf:value>
 </uiLib:OpenURL-OBJECT-METADATA-ZONE>
</dc:identifier>

The third method utilized the Relation refinement
"dcq:isPartOf." In this approach an rdf:Description
which contains journal metadata is embedded within
the dcq:isPartOf node. For example:

<dcq:isPartOf>
 <rdf:Description rdf:ID="JournalIssue">
 <dc:identifier>
 <uiLib:ISSN>
 <rdf:value>1234-5678</rdf:value>
 </uiLib:ISSN>
 </dc:identifier>
 <dc:title>Some Journal</dc:title>
 <dcq:alternative>Some Jrnl.</dcq:alternative>
 </rdf:Description>
</dcq:isPartOf>

Utilizing one or more of the above methods, and
using a minimal amount of string parsing, every
element required for citation linking can be extracted
from the metadata.

4.2 Agent related extensions

Local extensions also were required to represent
additional Creator and Contributor properties, such as
affiliation and email address. These are issues within
the purview of the Agents Working Group. The
initial proposals from this group were more concrete
than those from the Citation Working Group, but still
predate last July’s DCQ release and are far from
final. Currently there are also competing proposals,
e.g., ones based on vCard and LCNAF. Our
implementation makes use of the semantics
originally proposed by the Agents Working Group
[8], pending an update from them.

In order to maintain the significance of the
sequence of authors, an RDF Sequence container was
used. This is illustrated below, along with the DC
Agent Working Group semantics that we utilize:

<dc:creator>
 <rdf:Seq>
 <rdf:li>
 <dca:Person rdf:ID="AUTHOR-1">
 <dca:agentname>
 <dca:FNF>
 <rdf:value>Author, A. N.</rdf:value>
 </dca:FNF>
 </dca:agentname>
 <dca:agentaffiliation>
 Big University
 </dca:agentaffiliation>
 <dca:agentidentifier
 rdf:resource="mailto:ana@big.edu"/>

DC-2001, October 24-26, 2001, NII, Tokyo, Japan

246

 </dca:Person>
 </rdf:li>
 <rdf:li>
 <dca:Person rdf:ID="AUTHOR-2">
 …
 </dca:Person>
 </rdf:li>
 </rdf:Seq>
</dc:creator>

The namespace prefix dca is used for DC Agent tags.
At the time of this writing, there was no official
namespace URI or RDF Schema for DC Agent, so
the URL to the standards document was used as the
namespace URI.

4.3 Type and encoding extensions

Finally, local extensions were needed to allow for
additional types and encodings beyond those defined
by the DCMI Type Vocabulary and by DCQ itself.
For example, types were needed to differentiate
among different kinds of citations, such as
conference proceedings, journal articles, and patents.
Also, new encodings were needed for Subject and
Identifier, such as PACS for the Physics and
Astronomy Classifications Scheme, ACMCCS for
the ACM Computing Classification System, and
ISSN, CODEN, or publisher-specific journal codes
for identifying journals. In these cases we just
created our own encodings or types which we
defined in our local RDF Schema.

5 Conclusions

Our initial overall assessment of DCQ and RDF
for scientific and technical journal article metadata is
very positive. However several concerns remain:

• There is a steep learning curve associated with
RDF; this will dissuade some potential
implementers. The value of RDF must be better
described to provide sufficient incentive.

• DCQ documents imply that local extensions are
allowed and even encouraged, but existing
documentation is weak as to best practices and
requirements for creating local extensions.

• The algorithms for transforming from DCQ in
RDF to unqualified Dublin Core have become
highly complex and dependent upon access to
RDF Schemas; this alters the original
connotation of “dumb-down.”

• When using RDF there are opportunities to
extensively modularize metadata structures (e.g.,
RDF Statements); but the extent to which this
should be done, or is desirable, remains unclear.

6 References

[1] W. H. Mischo and T. W. Cole. "Processing and
Access Issues for Full-Text Journals," in Successes
and Failures of Digital Libraries, S. Harum and M.
Twidale (eds.). Graduate School of Library and
Information Science, University of Illinois at Urbana-
Champaign, 2000, pp. 21-40.

[2] http://dli.grainger.uiuc.edu/
[3] http://www.crossref.org
[4] H. Van de Sompel, P. Hochstenbach, and O. Beit-

Arie. OpenURL Syntax Description. Ex Libris,
2000. http://www.sfxit.com/openurl/openurl.html

[5] S. Kokkelink and R. Schwänzl. Expressing Qualified
Dublin Core in RDF, Working Draft. Dublin Core
Metadata Initiative, 2001.
http://www.mathematik.uni-
osnabrueck.de/projects/dcqual/qual21.3.1/

[6] O. Lassila and R. R. Swick (eds.). Resource
Description Framework (RDF) Model and Syntax
Specification. W3C, 1999.
http://www.w3.org/TR/REC-rdf-syntax/

[7] A. Powell and A. Apps. Encoding OpenURLs in
Dublin Core metadata. Ariadne Issue 27, March
2001. http://www.ariadne.ac.uk/issue27/metadata/

[8] R. Iannella (ed.). DC Agent Qualifiers, Working
Draft. Dublin Core Metadata Initiative, 1999.
http://www.mailbase.ac.uk/lists/dc-agents/files/wd-
agent-qual.html

