
Proc. Int’l Conf. on Dublin Core and Metadata Applications 2011

Universal File System Extended Attributes Namespace

François Revol
Haiku Operating System

revol@free.fr

Abstract
The growing usage of file system extended attributes on many operating systems faces
interoperability problems when trying to preserve them across multiple platforms. We propose a
generic namespace design and idempotent mapping method to maintain an identical view of the
global metadata namespace by each operating system. Additionally, we try to address the API and
semantic incompatibilities with a higher level framework.
Keywords: metadata; interoperability; file-system; extended attributes; xattr; named streams;
BFS; NTFS; SMB.

1. The Problem
File-system extended attributes, often abbreviated xattrs, or EAs, are a form of file metadata

storage consisting of name-value pairs, and are used in many operating systems, under many
forms and names (Resource Fork, Named Streams), for many purposes, either for security
concerns (Access Control Lists, Proof Carrying), fallback for missing file-system properties
(DOS attributes, POSIX “atime”) or user-level applications (Leung et al., 2008), from early
adopters like the BeOS, up to recent semantic desktops (Möller et al., 2007). At the file-system
level they are usually handled as named raw data attached to the file's structure (inode), without
any further semantic attached. Operating Systems then use them for their own purposes, like
security, but most of them are left for application use as binary data without any interpretation by
the Operating System, just as is done for file content itself.

However, various incarnations of EA concepts are usually incompatible with each other. Some
have split namespaces for kernel-private data like Access Control Lists and user accessible
metadata like Linux (attr(5) manpage), others have a single namespace using the reverse-DNS
notation by convention like Mac OS X which maps the old HFS resource fork to EAs as
com.apple.ResourceFork, some have typed values like BFS (Giampaolo, 1999) used in
the BeOS and Haiku operating systems (Haiku), and the API to enumerate and access them aren’t
compatible. The POSIX drafts (1003.1e / 1003.2c Draft Standard 17) used for one of the several
APIs in Linux has been withdrawn.

The growing usage of incompatible extended attributes conflicts with the need for
interoperability, especially in OpenSource operating systems like GNU/Linux which now
includes implementations for many foreign file-systems like FAT, NTFS, SMB, BFS and HFS.
Each such implementation either uses a naive approach for mapping foreign extended attributes,
leading to namespace pollution and name clashes (NTFS-3g), or a more complex but unilaterally-
imposed (and thus not idempotent) mangling (Tridgell, 2005), when the file is moved across disks
and systems, or sometimes just doesn’t expose extended attributes at all due to lack of a clear
mapping. A recent proposition for NFS extended attribute support on Linux already asserts
incompatibility with the original IRIX implementation (Morris, 2009). Moreover, some file-
systems, including ext3 and even ext4, have severe limitations on the size available for EA
storage (a single block per inode). Some old file-systems do not support extended attributes at all,
for which several incompatible backing-store schemes have been devised, some being patented
(French et al., 2008).

69

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2011

Even today, many GNU/Linux distributions do not enable “user_xattr” support for file-systems
by default, and xattr-related features in many software like Samba are to be manually enabled.
Haiku uses xattrs natively on its own file-system, but doesn't support them on most foreign file-
systems, losing them when copying files over, and uses a custom extension to “ZIP” files to
archive and transport them correctly. On the other hand, Mac OS X also natively uses them, but
clutters foreign file-systems with .DS_Store and ._foobar files even when xattrs could have
been used instead. All this led software developers to avoid the use of xattrs even when they
made sense up until now, also causing trouble in backup software that isn't aware of their
existence. So while they are already used for many purposes, they aren't yet used as much as they
could. Moving contacts (People files) from a system running Haiku to some foreign file-systems,
or uploading them by FTP results in an empty file (which it is) but without any of the xattrs
containing the contact data, while moving them around other file-systems mangles them in a non-
idempotent way into unusable xattrs. People often copy files without caring about xattrs, and
even utilities like cp don't preserve them without passing extra arguments. Developers therefore
under-use them and avoid them for critical information storage.

While reading physical disks from different systems was unlikely in the past, growing usage of
networked file-systems and virtualization platforms, using optimized shared folders like VMware
or VirtualBox, increases the issue since they are meant to be used from multiple operating
systems. Other higher-level protocols and applications, for example rsync and subversion,
and archive formats like tar and star also try to support some form of extended attributes.

Digital heritage preservation is also a concern, since files are not only interesting for their
content, but also their context, including dates and permissions, when copied over file-systems.
Projects seeking to preserve digital creation (UK National Archives, POCOS) can operate at
various levels. Some will archive full disk images that include the on-disk file-system structures,
containing their vendor-specific metadata. Others will prefer archiving files separately, at the risk
of losing some of their properties that might be exposed as EA data.

1.1. Example
A 0-byte file on a BFS partition seen from Haiku could carry the following extended attributes:

File: /boot/home/people/François_Revol
Type Size Name Value
'MIMS' 21 "BEOS:TYPE" "application/x-person"
STRING 14 "META:email" "revol@free.fr"
STRING 8 "IM:status" "Offline"
STRING 23 "META:url" "http://revolf.free.fr/"
RAW 20 "_trk/pinfo_le" 00 BA E3 EC A7 09…

After copying this file to an NTFS partition, rebooting to Windows to copy the file to a Samba
share running on GNU/Linux (with the xattr support enabled), then rebooting to Haiku to read it
back from the ext3 filesystem, the extended attributes might become:

File: /unnamed_ext3/home/revol/François_Revol
Type Size Name Value
RAW 264 "linux.user.DosStreams"
 05 00 00 00 00 00 00… '................'
 00…-42 45 4f 53 5f… '........BEOS_TYP'
 45 00 53 4d 49 4d 61… 'E.SMIMapplicatio'…

70

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2011

2. Proposed Solution
Instead of having each vendor define its own reserved namespace prefix and mangling scheme
for others to implement, we define a common prefix that all vendors should recognize, arbitrarily
named uxa for Unified eXtended Attributes, and map each vendor’s native namespace below it.
Vendors then only specify the mangling scheme of the common unified namespace itself into and
from their native EA system. This allows each platform to maintain a canonical representation of
the xattrs without requiring any knowledge of foreign EA mappings. This uxa namespace does
not try to map extended attribute semantics between platforms, but instead focuses on ensuring
correct preservation of the original form, and leaves the interpretation of foreign data to higher
layers, only providing a generic namespace that encompasses all others, and an idempotent
mangling scheme.

FIG. 1. UXA namespace, the tao of xattr namespaces.

2.1. Namespace Hierarchy
We reserve part of each native EA namespace with the unlikely prefix uxa. for Unified

eXtended Attributes, to map the uxa namespace and subdivide it further, while keeping the native
names unchanged. Foreign EAs would then appear in a branch of the uxa namespace. When
copied from a native filesystem to a foreign one, the mapping is reversed: the remaining part of
the native namespace appears in the designated branch of the uxa namespace, and existing EAs
copied to the branch corresponding to the foreign filesystem are extracted from the uxa
namespace. A shortened unix shell pattern-like representation would be:
uxa.{sys|user}.{ea|ns|md}.{bfs|ntfs|posix|sun|*}.*
The proposed hierarchy for the uxa namespace follows, using reversed-DNS like notation,

though shortened to minimize size and performance penalty on file copying, which shouldn’t
require special encoding, US-ASCII being sufficient for naming the specified levels. The root
level defines the uxa namespace itself as being reserved in native namespaces. The second level
separates user-accessible EAs from kernel-only names, though the security implications would
likely warrant not using it, due to discrepancies in semantic interpretation of the security
restrictions that should apply to them. The third level indicates if the EA originates from a named
stream or real EA, since some platforms support both. Other forms of metadata (md) are
accounted for, to handle mapping POSIX atime for example. The last designated level names
the platform the EA originates from, and indicates the corresponding mangling scheme to use.
The next level maps native namespaces from vendors, and assumes UTF-8 encoding (which
includes US-ASCII). Vendor-specific mappings should ensure preservation of the original name,
possibly through percent-escaping as with Uniform Resource Locators. Such a candidate is NTFS
which disallows some reserved characters like “:” in the named stream designations.

The uxa namespace can be mapped partially multiple times, for example a filesystem
supporting both EAs and named streams would map the uxa.*.ns.* and uxa.*.{ea|
md}.* in the respective namespaces. Likewise for user-accessible and restricted namespaces.

system
trusted

user

uxa

sys

user

ns

ea

md

...

ntfs

ntfs
ext3
bfs

uxa user * ntfs
ext3

uxa user ns hfs

*

*

uxa user ea,
md

bfs
ext3

*

hfs

*

*

ntfs namespaces uxa namespace

ext3 namespace

bfs namespace

uxa sys,
user * ntfs

bfs *
**

* *

*

...
*
*...

71

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2011

In order to better abstract extended attribute mechanisms, we use a model of the traditional
OSI network layering (Zimmerman, 1980), and separate the transport and presentation layers. For
performance reasons, we propose to split the implementation of the uxa namespace support in
Operating Systems. The basic remapping scheme would be implemented in file system layers,
typically foreign filesystem kernel modules, while native filesystems will likely not have to
mangle the system’s native API view of the xattrs, and as such will not suffer any performance
loss. The approach taken ensures that foreign file-system implementations only need to care
about their respective vendor-defined mangling scheme, since they provide a canonical view to
the VFS layer of the OS using the native mangling of the uxa namespace. For example, the
“befs.ko” Linux module implementing BFS support would mangle Haiku-specific xattrs as
user.uxa.user.ea.bfs.* as specified by Haiku developers and demangle the uxa.user.ea.posix.* BFS
EA data as Linux-native user.* xattrs. The BFS mangling scheme will need to encode the type
field in some way, either as part of the mangled name, or as part of the value, but this is left to the
Haiku developers. In the case of NTFS, the NTFS-3g library could provide the direct uxa
namespace canonical representation, and each OS using it would then mangle it back to their
native namespace, inside the FUSE kernel modules, for example.

2.1. Higher Level View
Higher level views would be available through either a custom library exposing more

semantics, or a reimplemented libxattr compatible with the Linux API for faster portability. This
library could try to automatically convert foreign attributes to standardized views, for example
the FreeDesktop.org set which includes the Simple Dublin Core Metadata Element Set
(FreeDesktop.org 1 & 2). Other possibilities could include a Java API extension, building on
(JSR 203). Conversion tools can also be written to help users migrate their (meta)data. The
proposed scheme could also finally be taken as a canonical representation for use in backing-store
systems to replace platform-specific files that clutter directories like .DS_Store or the
FreeDesktop.org proposed solution.

EAs requiring conversion include the MIME type of the file, defined as a value of type
“MIMS” and name “BEOS:TYPE” in Haiku, a string named “user.mime_type” on FreeDesktop-
compliant platforms, or a list of Uniform Type Identifiers (UTI) on Mac OS X.

Other metadata of interest is the originating URI of a downloaded file. Mac OS X stores this as
a binary structure (property list) of name “com.apple.metadata:kMDItemWhereFroms”. BeOS
and Haiku would instead use a string typed “CSTR” of name “META:url”. FreeDesktop specifies
it as “user.xdg.origin.url”.

3. Shortcomings
The uxa namespace mapping doesn’t consider file-systems with limited storage capabilities,

and assumes small enough attributes and names, as a best-effort solution. The uxa namespace
design tries to minimize the length of the name prefixes. As noted, ext2, 3 and 4 file-systems only
allow a single disk block per inode for xattr storage, including names. Other filesystems like XFS
allow larger xattrs, 64kB per xattr, and up to 255 bytes for the xattr names in this case. BFS
doesn't impose any limitation of xattr size but is able to store small ones in the “small_data”
section of the inode. It is expected that system administrators will be made aware of the problem
and account for xattr size limits when choosing a file-system for archiving purposes. Likewise,
file-system designers are expected to include fair provision for EA data size in their decisions.

A fall-back strategy should probably use backing files, as with file-systems missing extended
attribute support. Some operating systems support extended attributes only on regular files, not
symlinks or directories. ACL mappings aren’t accounted for and are already subject to much
discussion in the literature. The low-level mapping only focuses on preserving the xattrs across
file-systems and operating systems, and does not consider their meaning or even their content.
Software accessing xattrs on files without further processing will not likely have any use for

72

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2011

those imported from other operating systems, but will at least be able to keep them when
transferring data.

Higher-level support is still subject to broad discussion about which semantic level to achieve.
Also, the proposed higher-level xattr transformations do not consider the possible lack of
synchronization between the original metadata and their converted form attached to the same file,
i.e., a file could end up with both a BEOS:TYPE and user.mime_type xattr with different values.

A centralized registry, like the one used for MIME types (IANA), should be designated to
attribute vendor names into the uxa namespace, and mangling schemes should be publicly
disclosed and agreed upon, through RFCs for example, to be successfully usable. Finally it is also
unlikely that proprietary software vendors will ever conform to such a scheme without a strong
standardization effort, but implementation by most OpenSource projects could help the process.

4. Conclusion
The purpose of this early work was to raise the concern about extended attributes

interoperability, propose a possible solution using an idempotent mangling scheme of a common
namespace allowing further processing at higher layers, and foster discussion between involved
parties, possibly leading to a standardized document like an IETF Request For Comment, with
vendors defining the global namespace mapping to their own filesystems and protocols. Both
OpenSource and proprietary projects would benefit from standardized extended attribute
interoperability schemes allowing platforms to maintain each other's metadata across file
transfers, making them more useful. Additionally, applications would benefit from having a
standardized view on existing foreign extended attributes.

References
attr(5) mainpage. http://linux.die.net/man/5/attr
FreeDesktop.org 1: Common Extended Attributes. http://www.freedesktop.org/wiki/CommonExtendedAttributes
FreeDesktop.org 2: Shared File MetaData. http://www.freedesktop.org/wiki/Specifications/shared-filemetadata-spec
French, S. M., Kleikamp, D.K. and Tso, T.Y.T. (2008). Method and apparatus for emulating alternate data streams

across heterogeneous file systems, 03 2008. (IBM) (US patent 2008/0065698 A1).
Giampaolo. D. (1999). Practical file system design with the BE file system. Morgan Kaufmann Publishers, Los Altos,

CA 94022, USA.
Haiku Operating System. http://www.haiku-os.org/
IANA (Internet Assigned Numbers Association). http://www.iana.org/
JSR 203. http://www.jcp.org/en/jsr/detail?id=203
Leung, A.W., Shao, M., Bisson, T., Pasupathy, S. and Miller, E.L. (2008). High-performance metadata indexing and

search in petascale data storage systems. Journal of Physics: Conference Series, 125:012069 (5pp).
Möller, K. and Handschuh, S. (June 2007). Towards a light-weight semantic desktop. In Proceedings of the Semantic

Desktop Design Workshop (SemDeskDesign 2007) at ESWC2007, Innsbruck, Austria, Innsbruck, Austria.
Morris, J. (2009). Adding extended attribute support to NFS.

http://namei.org/presentations/linuxcon09_nfsv3xattrs.pdf
NTFS-3g extended attributes. http://www.tuxera.com/community/ntfs-3g-advanced/extended-attributes/
POCOS (Preservation of Complex Objects). http://pocos.org/
Posix 1003.1e / 1003.2c Draft Standard 17 (withdrawn).

http://www.suse.de/~agruen/acl/posix/posix.html
Tridgell, A. (2005). Wine/samba. http://www.samba.org/samba/ftp/slides/tridge_wineconf05.pdf (Wineconf).
UK National Archives.
 http://www.nationalarchives.gov.uk/information-management/projects-and-work/digital-preservation.htm
Zimmerman, H. (1980). Osi reference model - the iso model of architecture for open systems interconnection. IEEE

Transactions on Communications, (28).

73

